A slice of CATALAN combinatorics from the perspective of COXETER sortable elements of the symmetric group

Jad Abou Yassin

Institut Denis Poisson, University of Tours

Le Croisic - June 9, 2025

Summary

1. Coxeter sortable elements of the symmetric group

- Symmetric group
- COXETER sortable elements

2. Non crossing partitions

- Geometric non crossing partitions
- Bijection with the *c*-sortable elements

3. Binary trees

- Binary trees and SSA algorithm
- Link with c-sortable elements

- 1. Coxeter sortable elements of the symmetric group
 - Symmetric group
 - COXETER sortable elements
- 2. Non crossing partitions
- 3. Binary trees

Notations

Let $n \in \mathbb{N}^*$. We note \mathfrak{S}_n the symmetric group of order n.

An element $\sigma \in \mathfrak{S}_n$ is represented by its one line notation : $\sigma(1)\sigma(2)\ldots\sigma(n)$.

Example : $\mathfrak{S}_3 = \{1\ 2\ 3,\ 2\ 1\ 3,\ 2\ 3\ 1,\ 1\ 3\ 2,\ 3\ 1\ 2,\ 3\ 2\ 1\}.$

Notations

Let $n \in \mathbb{N}^*$. We note \mathfrak{S}_n the symmetric group of order n.

An element $\sigma \in \mathfrak{S}_n$ is represented by its one line notation : $\sigma(1)\sigma(2)\ldots\sigma(n)$.

Example : $\mathfrak{S}_3 = \{1 \ 2 \ 3, \ 2 \ 1 \ 3, \ 2 \ 3 \ 1, \ 1 \ 3 \ 2, \ 3 \ 1 \ 2, \ 3 \ 2 \ 1\}.$

COXETER elements

A COXETER element of a COXETER group W is an element of W that is the product of all the generators exactly once.

Examples : $s_1 s_2 \dots s_{n-1}$, $s_1 s_3 \dots s_{n-1} \dots s_4 s_2$.

COXETER elements

A COXETER element of a COXETER group W is an element of W that is the product of all the generators exactly once.

Examples : $s_1 s_2 \dots s_{n-1}$, $s_1 s_3 \dots s_{n-1} \dots s_4 s_2$.

A COXETER element of \mathfrak{S}_n is permutation c of \mathfrak{S}_n that is a great cycle of the form $(1, a_1, \ldots, a_k, n, b_l, \ldots, b_1)$ where k + l = n - 2, $a_1 < \cdots < a_k$ and $b_1 < \cdots < b_l$.

COXETER elements

A COXETER element of a COXETER group W is an element of W that is the product of all the generators exactly once.

Examples : $s_1 s_2 \dots s_{n-1}$, $s_1 s_3 \dots s_{n-1} \dots s_4 s_2$.

A COXETER element of \mathfrak{S}_n is permutation c of \mathfrak{S}_n that is a great cycle of the form $(1, a_1, \ldots, a_k, n, b_l, \ldots, b_1)$ where k + l = n - 2, $a_1 < \cdots < a_k$ and $b_1 < \cdots < b_l$.

It is characterized by a partition of $\{2,\ldots,n-1\}=\underbrace{\{a_1,\ldots,a_k\}}_{L_c}\sqcup\underbrace{\{{\color{red}b_1,\ldots,b_l}\}}_{R_c}.$

Examples: let n = 6, (1, 3, 4, 6, 5, 2), (1, 6, 5, 4, 3, 2), (1, 2, 3, 4, 5, 6), (1, 5, 2, 6, 3, 4).

COXETER sortable elements

Let c be a COXETER element of \mathfrak{S}_n . A permutation $\sigma \in \mathfrak{S}_n$ is c-sortable [Rea05] if its one line notation avoids the following patterns :

• $ki \dots j$ for i < j < k and $j \in L_c$

• $j \dots ki$ for i < j < k and $j \in R_c$.

COXETER sortable elements

Let c be a COXETER element of \mathfrak{S}_n . A permutation $\sigma \in \mathfrak{S}_n$ is c-sortable [Rea05] if its one line notation avoids the following patterns :

• $ki \dots j$ for i < j < k and $j \in L_c$

• $j \dots ki$ for i < j < k and $j \in R_c$.

Examples : let n = 7 and c = (1, 3, 4, 6, 7, 5, 2).

- 7416325 is not c-sortable because it contains a pattern $ki \dots j$ with $j=6 \in L_c$.
- 6521743 is not c-sortable because it contains a pattern $j \dots ki$ with $j = 5 \in R_c$.
- 3167425 is *c*-sortable because it avoids all the patterns.

CATALAN

Let $n \in \mathbb{N}^*$. For any COXETER element c of \mathfrak{S}_n , there are $C_n = \frac{1}{n+1} \binom{2n}{n}$ c-sortable elements.

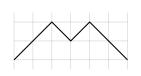
CATALAN

Let $n \in \mathbb{N}^*$. For any COXETER element c of \mathfrak{S}_n , there are $C_n = \frac{1}{n+1} \binom{2n}{n}$ c-sortable elements.

This means the c-sortable elements are in bijection with all the objects enumerated by the Catalan numbers.

Examples:

 DYCK paths of length 2n



Triangulations of (n+2)-gons

Well parenthesized expressions of n+1 factors

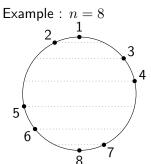
$$((a(bc))d)(ef) \\$$

- 1. Coxeter sortable elements of the symmetric group
- 2. Non crossing partitions
 - Geometric non crossing partitions
 - Bijection with the *c*-sortable elements
- Binary trees

Labeling the circle

Let $n\in\mathbb{N}^*$ and place on a circle the numbers from 1 to n such that :

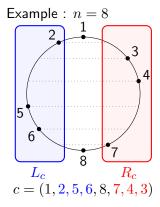
- 1 is at the highest point and n is at the lowest point,
- no two numbers are on the same height,
- reading from top to bottom the numbers are increasing.



Labeling the circle

Let $n\in\mathbb{N}^*$ and place on a circle the numbers from 1 to n such that :

- 1 is at the highest point and n is at the lowest point,
- no two numbers are on the same height,
- reading from top to bottom the numbers are increasing.

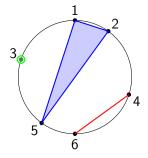


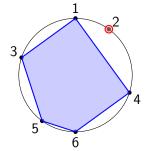
A c-labeling is a labeling such that on the left are the elements of L_c and on the right the elements of R_c

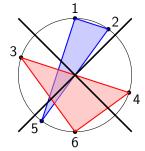
Non crossing partitions

A c-non crossing partition is a set of non crossing polygons with vertices the marked points of a c-labeled circle. Single points and segments are considered as polygons.

Examples : n = 6 and c = (1, 3, 5, 6, 4, 2)

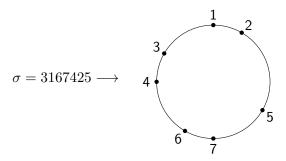






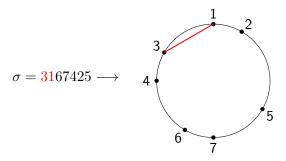
Theorem (READING [Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .



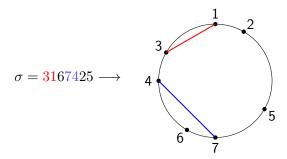
Theorem (READING [Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .



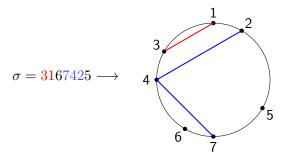
Theorem (READING [Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .



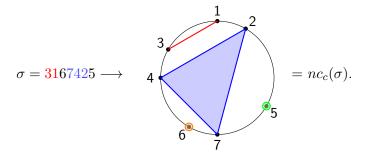
Theorem (READING [Rea05])

The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .

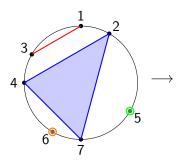


Theorem (READING [Rea05])

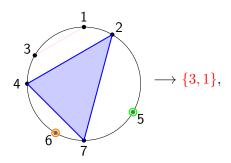
The set of c-sortable elements is in bijection with the set of c-non crossing partitions via an explicit map called nc_c .



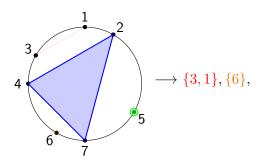
The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].



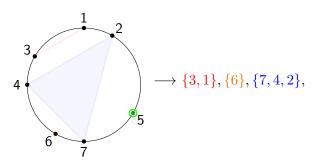
The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].



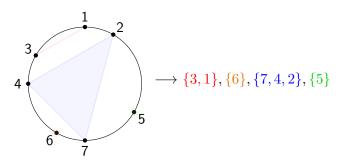
The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].



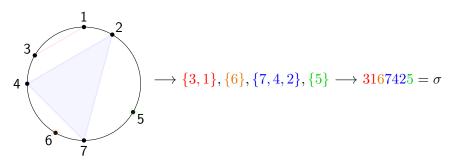
The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].



The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].



The inverse map of nc_c can be computed by selecting the polygons of a c-non crossing partition in a specific order [Gob18].

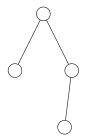


- 1. Coxeter sortable elements of the symmetric group
- 2. Non crossing partitions
- 3. Binary trees
 - Binary trees and SSA algorithm
 - Link with *c*-sortable elements

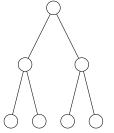
Binary trees

A binary tree is either an empty tree or a node with exactly one left child and one right child that are binary trees. The size of a binary tree is the number of nodes in the tree.

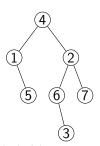
Examples:



A binary tree.



A complete binary tree.

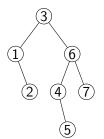


A labeled binary tree.

Binary search trees, descending trees

A binary search tree is a labeled binary tree such that the label of each node is larger than the labels of its left child and smaller than the labels of its right child.

Examples:



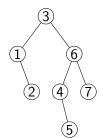
A binary search tree

Binary search trees, descending trees

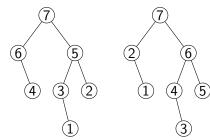
A binary search tree is a labeled binary tree such that the label of each node is larger than the labels of its left child and smaller than the labels of its right child.

A descending tree is such that the label of each node is larger than the labels of its descendants.

Examples:



A binary search tree



Two descending trees of the same shape

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \left\{ (T,Q) \; \middle| \; egin{array}{c} T \; \mbox{is a binary search tree of size n and} \ Q \; \mbox{is a descending tree of the same shape as T} \end{array}
ight.$$

Example : Let n=7 and $\sigma=2154763$.

$$T(\sigma) =$$

$$Q(\sigma) =$$

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

Example : Let n=7 and $\sigma=2154763$. (position = 7)

$$T(\sigma) =$$

$$Q(\sigma) =$$

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \left\{ (T,Q) \;\middle|\; egin{array}{c} T \; \mbox{is a binary search tree of size n and} \ Q \; \mbox{is a descending tree of the same shape as T} \end{array}
ight.$$

Example : Let n=7 and $\sigma=2154763$. (position = 6)

$$T(\sigma) =$$
 3 $Q(\sigma) =$ 7

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq \left\{ (T,Q) \;\middle|\; egin{array}{c} T \; \mbox{is a binary search tree of size n and} \ Q \; \mbox{is a descending tree of the same shape as T} \end{array}
ight.$$

Example : Let n=7 and $\sigma=2154763$. (position = 5)

$$T(\sigma) = 3$$

$$Q(\sigma) =$$

Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq egin{cases} (T,Q) & T \text{ is a binary search tree of size } n \text{ and} \\ Q \text{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n=7 and $\sigma=2154763$. (position = 4)

$$T(\sigma) = 3$$

$$Q(\sigma) = C$$

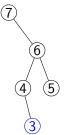
Theorem (SSA algorithm [HNT04])

There is an explicit bijection

Example : Let n=7 and $\sigma=2154763$. (position = 3)

$$T(\sigma) = 3$$

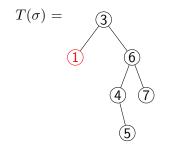
$$Q(\sigma) =$$

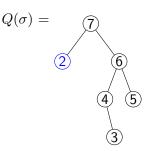


Theorem (SSA algorithm [HNT04])

There is an explicit bijection

Example : Let n=7 and $\sigma=2154763$. (position = 2)

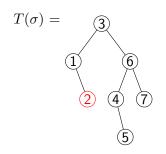


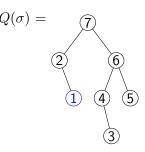


Theorem (SSA algorithm [HNT04])

There is an explicit bijection

Example : Let n=7 and $\sigma=2154763$. (position = 1)



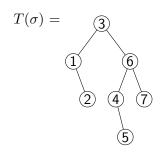


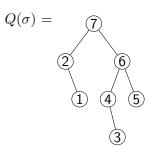
Theorem (SSA algorithm [HNT04])

There is an explicit bijection

$$\mathfrak{S}_n \simeq egin{cases} (T,Q) & T ext{ is a binary search tree of size } n ext{ and} \\ Q ext{ is a descending tree of the same shape as } T \end{cases}$$

Example : Let n=7 and $\sigma=2154763$.





Sylvester congruence

SSA algorithm : $\sigma \in \mathfrak{S}_n$ is encoded by $(T(\sigma), Q(\sigma))$.

What happens if we forget $Q(\sigma)$? Can we describe all $\sigma' \in \mathfrak{S}_n$ s.t. $T(\sigma) = T(\sigma')$?

Sylvester congruence

SSA algorithm : $\sigma \in \mathfrak{S}_n$ is encoded by $(T(\sigma), Q(\sigma))$.

What happens if we forget $Q(\sigma)$? Can we describe all $\sigma' \in \mathfrak{S}_n$ s.t. $T(\sigma) = T(\sigma')$?

Yes! $T(\sigma) = T(\sigma')$ iff σ' can be obtained from σ by a series of transformations of the form $ki \dots j \leftrightarrow ik \dots j$ with $i < j < k \longrightarrow$ Sylvester congruence on \mathfrak{S}_n .

Example : $\sigma' = 5421763$ has the same binary search tree than $\sigma = 2154763$

 $2154763 \rightarrow 2514763 \rightarrow 2541763 \rightarrow 5241763 \rightarrow 5421763$

If $c = (1, 2, 3, \dots, n - 1, n)$, then we have the following one to one maps :

2143

 $\begin{array}{l} \sigma \text{ with no } ki\ldots j \text{ pattern} \\ = \text{a } c\text{-sortable element} \end{array}$

If $c = (1, 2, 3, \dots, n - 1, n)$, then we have the following one to one maps :

$$\begin{array}{ccc}
2143 & \leftrightarrow & \left\{ \begin{array}{c}
2143 \\
2413 \\
4213
\end{array} \right\}$$

 $\begin{array}{l} \sigma \text{ with no } ki \ldots j \text{ pattern} \\ = \text{a } c\text{-sortable element} \end{array}$

A sylvester class

If $c = (1, 2, 3, \dots, n-1, n)$, then we have the following one to one maps:

 σ with no $ki \dots j$ pattern = a c-sortable element

A sylvester class A binary search tree

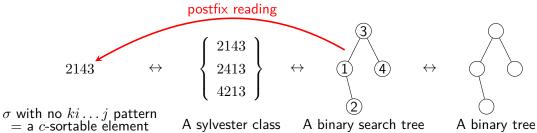
If $c = (1, 2, 3, \dots, n-1, n)$, then we have the following one to one maps:

 σ with no $ki \dots j$ pattern = a c-sortable element

A sylvester class A binary search tree

A binary tree

If $c=(1,2,3,\ldots,n-1,n)$, then we have the following one to one maps :



The map from binary trees to c-sortable elements can be directly obtained with a postfix reading of the associated binary search tree.

What I do

READING's map nc_c : {c-sortable elements} \rightarrow {c-non crossing partitions} is well defined for any (finite rank) COXETER group, and is a bijection in all finite COXETER groups.

In infinite COXETER groups, it is only injective, but never surjective. For example, in type \widetilde{A}_1 and c=st, all reflections are c-non crossing but all the following ones are not in the image of nc_c : tst, tstst, tststst, . . .

My goal is to define a generalized notion of c-sortable elements, at least in the affine types, such that $\operatorname{READING}$'s map can be naturally extended to be a bijection.

Thank you for your attention!