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Notations

Let n ∈ N∗. We note Sn the symmetric group of order n.

An element σ ∈ Sn is represented by its one line notation : σ(1)σ(2) . . . σ(n).
Example : S3 = {1 2 3, 2 1 3, 2 3 1, 1 3 2, 3 1 2, 3 2 1}.

Coxeter group : Sn ≃ ⟨s1, . . . , sn−1

∣∣∣∣∣∣∣∣
s2

i = 1 ∀1 ≤ i ≤ n − 1
sisj = sjsi ∀|i − j| > 1
sisi+1si = si+1sisi+1 ∀1 ≤ i ≤ n − 2

⟩
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Coxeter elements

A Coxeter element of a Coxeter group W is an element of W that is the product
of all the generators exactly once.
Examples : s1s2 . . . sn−1, s1s3 . . . sn−1 . . . s4s2.

A Coxeter element of Sn is permutation c of Sn that is a great cycle of the form
(1, a1, . . . , ak, n, bl, . . . , b1) where k + l = n − 2, a1 < · · · < ak and b1 < · · · < bl.

It is characterized by a partition of {2, . . . , n − 1} = {a1, . . . , ak}︸ ︷︷ ︸
Lc

⊔ {b1, . . . , bl}︸ ︷︷ ︸
Rc

.

Examples : let n = 6, (1, 3, 4, 6, 5, 2), (1, 6, 5, 4, 3, 2), (1, 2, 3, 4, 5, 6), (1, 5, 2, 6, 3, 4) .
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Coxeter sortable elements

Let c be a Coxeter element of Sn. A permutation σ ∈ Sn is c-sortable [Rea05] if its
one line notation avoids the following patterns :

ki . . . j for i < j < k and j ∈ Lc j . . . ki for i < j < k and j ∈ Rc.

Examples : let n = 7 and c = (1, 3, 4, 6, 7, 5, 2).

7416325 is not c-sortable because it contains a pattern ki . . . j with j = 6 ∈ Lc.

6521743 is not c-sortable because it contains a pattern j . . . ki with j = 5 ∈ Rc.

3167425 is c-sortable because it avoids all the patterns.
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Catalan

Let n ∈ N∗. For any Coxeter element c of Sn, there are Cn = 1
n + 1

(
2n

n

)
c-sortable elements.

This means the c-sortable elements are in bijection with all the objects enumerated by
the Catalan numbers.

Examples :

Dyck paths of length 2n Triangulations of (n + 2)-gons
Well parenthesized ex-
pressions of n+1 factors

((a(bc))d)(ef)
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Labeling the circle

Let n ∈ N∗ and place on a circle the numbers from 1 to
n such that :

1 is at the highest point and n is at the lowest
point,

no two numbers are on the same height,

reading from top to bottom the numbers are
increasing.

Example : n = 8
1

3
4

78

2

5
6

RcLc

c = (1, 2, 5, 6, 8, 7, 4, 3)

A c-labeling is a labeling such that on the left are the elements of Lc and on the right
the elements of Rc
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Non crossing partitions

A c-non crossing partition is a set of non crossing polygons with vertices the marked
points of a c-labeled circle. Single points and segments are considered as polygons.

Examples : n = 6 and c = (1, 3, 5, 6, 4, 2)

1
2

4

6

3

5

1
2

4

6

3

5

1
2

4

6

3

5
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Bijection with the c-sortable elements

Theorem (Reading [Rea05])
The set of c-sortable elements is in bijection with the set of c-non crossing partitions
via an explicit map called ncc.

Example : let n = 7, c = (1, 3, 4, 6, 7, 5, 2) and σ = 3167425. It is a c-sortable element.

σ = 3167425 −→

1
2

5

7

3

4

6

= ncc(σ).
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Inverse map

The inverse map of ncc can be computed by selecting the polygons of a c-non crossing
partition in a specific order [Gob18].

Example : Let’s use the c-non crossing partition we computed in the previous slide.

1
2

5

7

3

4

6

−→

{3, 1}, {6}, {7, 4, 2}, {5} −→ 3167425 = σ
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Binary trees

A binary tree is either an empty tree or a node with exactly one left child and one right
child that are binary trees. The size of a binary tree is the number of nodes in the tree.

Examples :

A binary tree. A complete binary tree.

4

1

5

2

6

3

7

A labeled binary tree.
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Binary search trees, descending trees

A binary search tree is a labeled binary tree such that the label of each node is larger
than the labels of its left child and smaller than the labels of its right child.

A descending tree is such that the label of each node is larger than the labels of its
descendants.

Examples :

3

1

2

6

4

5

7

A binary search tree

7

6

4

5

3

1

2

7

2

1

6

4

3

5

Two descending trees of the same shape
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7

6

4

5

3

1

2

7

2

1

6

4

3

5
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763.

T (σ) =

3

1

2

6

4

5

7

Q(σ) =

7

2

1

6

4

3

5

Jad Abou Yassin (IDP Tours) Coxeter sortable elements of the symmetric group Cortipom 2025 14 / 17



Coxeter sortable elements of the symmetric group Non crossing partitions Binary trees

SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
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
Example : Let n = 7 and σ = 2154763. (position = 7)

T (σ) =

3

1

2

6

4

5

7

3 Q(σ) =

7

2

1

6

4

3

5

7
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∣∣∣∣∣∣ T is a binary search tree of size n and
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
Example : Let n = 7 and σ = 2154763. (position = 6)

T (σ) =

3

1

2

6

4

5

7

3

6

Q(σ) =

7

2

1

6

4

3

5

7

6
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763. (position = 5)

T (σ) =

3

1

2

6

4

5

7

3

6

7

Q(σ) =

7

2

1

6

4

3

5

7

6

5
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763. (position = 4)

T (σ) =

3

1

2

6

4

5

7

3

6

4 7

Q(σ) =

7

2

1

6

4

3

5

7

6

4 5
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763. (position = 3)

T (σ) =

3

1

2

6

4

5

7

3

6

4

5

7

Q(σ) =

7

2

1

6

4

3

5

7

6

4

3

5
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763. (position = 2)

T (σ) =

3

1

2

6

4

5

7

3

1 6

4

5

7

Q(σ) =

7

2

1

6

4

3

5

7

2 6

4

3

5
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763. (position = 1)

T (σ) =

3

1

2

6

4

5

7

3

1

2

6

4

5

7

Q(σ) =

7

2

1

6

4

3

5

7

2

1

6

4

3

5
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SSA algorithm

Theorem (SSA algorithm [HNT04])
There is an explicit bijection

Sn ≃

(T, Q)

∣∣∣∣∣∣ T is a binary search tree of size n and
Q is a descending tree of the same shape as T


Example : Let n = 7 and σ = 2154763.

T (σ) = 3

1

2

6

4

5

7

Q(σ) = 7

2

1

6

4

3

5
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Sylvester congruence

SSA algorithm : σ ∈ Sn is encoded by (T (σ), Q(σ)).

What happens if we forget Q(σ)? Can we describe all σ′ ∈ Sn s.t. T (σ) = T (σ′)?

Yes! T (σ) = T (σ′) iff σ′ can be obtained from σ by a series of transformations of the
form ki . . . j ↔ ik . . . j with i < j < k −→ Sylvester congruence on Sn.

Example : σ′ = 5421763 has the same binary search tree than σ = 2154763

2154763 → 2514763 → 2541763 → 5241763 → 5421763
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Coxeter sortable elements of the symmetric group Non crossing partitions Binary trees

Link with c-sortable elements

If c = (1, 2, 3, . . . , n − 1, n), then we have the following one to one maps :

A binary tree

↔

3

1

2

4

A binary search tree

↔


2143
2413
4213


A sylvester class

↔

2143

σ with no ki . . . j pattern
= a c-sortable element

postfix reading

The map from binary trees to c-sortable elements can be directly obtained with a
postfix reading of the associated binary search tree.
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What I do

Reading’s map ncc : {c-sortable elements} → {c-non crossing partitions} is well
defined for any (finite rank) Coxeter group, and is a bijection in all finite Coxeter
groups.

In infinite Coxeter groups, it is only injective, but never surjective. For example, in
type Ã1 and c = st, all reflections are c-non crossing but all the following ones are not
in the image of ncc : tst, tstst, tststst, . . .

My goal is to define a generalized notion of c-sortable elements, at least in the affine
types, such that Reading’s map can be naturally extended to be a bijection.



Thank you for your attention!
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