The ascent order on Dyck paths

with Jean-Luc Baril, Sergey Kirgizov (Dijon, F) and Mehdi Naima (Paris, F)

Mireille Bousquet-Mélou CNRS, Université de Bordeaux, France

arXiv:2409.15982

Outline

- A new family of lattices An
- Interval counting
- Interesting subposets and their intervals
- Connection with sylvester congruence classes
- [Hivert, Novelli, Thibon 05]

I. Two orders on Dyck paths

Dyck paths

• A Dyck path of size n=8 (size=number of up steps)

UUDDUUUDUUDDDDD

Many posets on Dyck paths of size n

Poset = partially ordered set

Many posets on Dyck paths of size n

Poset = partially ordered set

• A poset on Dyck paths with n up steps

- A poset on Dyck paths with n up steps
- Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows (the path moves up).

- A poset on Dyck paths with n up steps
- Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows (the path moves up).

Characterization: $P \leq Q$ iff P fits below Q.

- A poset on Dyck paths with n up steps
- Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows (the path moves up).

Characterization: $P \leq Q$ iff P fits below Q.

- A poset on Dyck paths with n up steps
- Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows (the path moves up).

Characterization: $P \leq Q$ iff P fits below Q.

• Lattice structure: existence of sup and inf

The ascent poset (or: greedy Stanley lattice?)

- A poset on Dyck paths with n up steps
- Cover relations: choose a valley in the path P.
 - Swap the down step and the ascent that follows (the path moves up).

[Chenevière, Nadeau...]

Ascent posets: n = 3, 4

Proposition. In the ascent poset, $P \leq Q$ iff

- P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.

Proposition. In the ascent poset, $P \leq Q$ iff

- P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.

Proposition. In the ascent poset, $P \leq Q$ iff

- P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.

Applications:

- lattice structure
- recursive construction of intervals

II. The number of intervals

Interval $[P,Q] \sim (P,Q)$ with $P \leq Q$

Proposition. In the ascent poset, $P \leq Q$ iff

- P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as)
 a descent of P.

Corollary: if [P,Q] is an interval, deleting the last peak of P and the last peak of Q gives a new interval.

Proposition. In the ascent poset, $P \leq Q$ iff

- P lies below Q
- every descent of Q is (i.e. lies on the same diagonal as) a descent of P.

Corollary: if [P,Q] is an interval, deleting the last peak of P and the last peak of Q gives a new interval.

Conversely, starting from an interval [P,Q] with final peaks at heights a \leq b, adding peaks in P and Q at heights a' and b' gives an interval iff...

• $1 \le a' \le a+1$, $1 \le b' \le b+1$

- $1 \le a' \le a+1$, $1 \le b' \le b+1$
- a' ≤ b'

- $1 \le a' \le a+1$, $1 \le b' \le b+1$
- a' ≤ b'
- ◆ if a' = a+1 then b' = b+1.

- $1 \le a' \le a+1$, $1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.

- $1 \le a' \le a+1$, $1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.

Conversely, starting from an interval [P,Q] with final peaks at heights a \leq b, adding peaks in P and Q at heights a' and b' gives an interval iff...

- $1 \le a' \le a+1$, $1 \le b' \le b+1$
- a' ≤ b'
- if a' = a+1 then b' = b+1.

Bijection intervals of size n ≈ quadrant walks of length n-1 starting from (0,0)

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(x,y) = \sum_{w} t^{|w|} x^{i(w)} y^{j(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(x,y) = \sum_{w} t^{|w|} x^{i(w)} y^{j(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(\mathbf{x},\mathbf{y}) = \sum_{w} t^{|w|} \mathbf{x}^{\mathfrak{i}(w)} \mathbf{y}^{\mathfrak{j}(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(\mathbf{x},\mathbf{y}) = \sum_{w} t^{|w|} \mathbf{x}^{\mathfrak{i}(w)} \mathbf{y}^{\mathfrak{j}(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(\mathbf{x},\mathbf{y}) = \sum_{w} t^{|w|} x^{\mathfrak{i}(w)} y^{\mathfrak{j}(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Well understood: algebraic/differential properties of quadrant walks with finitely many small steps [Bernardi, Bostan, mbm, Raschel, Mishna, Zeilberger, Kauers, Hardouin, Dreyfus, Roques, Singer, Elvey Price...]

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(\mathbf{x},\mathbf{y}) = \sum_{w} t^{|w|} x^{\mathfrak{i}(w)} y^{\mathfrak{j}(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

• Well understood: algebraic/differential properties of quadrant walks with finitely many small steps [Bernardi, Bostan, mbm, Raschel, Mishna, Zeilberger, Kauers, Hardouin, Dreyfus, Roques, Singer, Elvey Price...]

$$\left(1-tx-ty-\frac{t}{xy}\right)xy\widetilde{Q}(x,y)=xy-t\widetilde{Q}(0,y)-t\left(\widetilde{Q}(x,0)-\widetilde{Q}(0,0)\right).$$

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(\mathbf{x},\mathbf{y}) = \sum_{w} t^{|w|} x^{\mathfrak{i}(w)} y^{\mathfrak{j}(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

Thm. Ascent intervals have an algebraic GF, namely

 $G = tQ(1,1) = Z(1 - 2Z + 2Z^3)$, where $Z = t(1 + Z)(1 + 2Z)^2$.

Asymptotics:

$$g(n) \sim \kappa \mu^n n^{-7/2}$$
, with $\mu = \frac{11 + 5\sqrt{5}}{2}$.

• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

$$Q(\mathbf{x},\mathbf{y}) = \sum_{w} t^{|w|} \mathbf{x}^{\mathfrak{i}(w)} \mathbf{y}^{\mathfrak{j}(w)}.$$

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

$$Q(x,y) = 1 + txQ(x,y) + ty^{2} \frac{xQ(x,y) - yQ(y,y)}{(x-y)(y-1)} - t \frac{xQ(x,1) - Q(1,1)}{(x-1)(y-1)}.$$

Thm. Ascent intervals have an algebraic GE namely $G = tQ(1,1) = Tutte's invariants 1 + Z)(1 + 2Z)^2.$ Asymptotics: [Bernardi, mbm, Raschel 21] $g(\pi) \sim \kappa \mu = \frac{1}{2}.$

A functional equation with two "catalytic" variables

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$K(x,y)(y-1)Q(x,y) = y - 1 - \frac{ty^3}{x-y}Q(y,y) - t\frac{xQ(x,1) - Q(1,1)}{x-1}$$

where

$$K(x,y) = 1 - tx - \frac{txy^2}{(x-y)(y-1)}.$$

A functional equation with two "catalytic" variables

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

$$K(x,y)(y-1)Q(x,y) = y - 1 - \frac{ty^3}{x-y}Q(y,y) - t\frac{xQ(x,1) - Q(1,1)}{x-1}$$

where

$$K(x,y) = 1 - tx - \frac{txy^2}{(x-y)(y-1)}.$$

• Observation: an equation of the form

$$\mathsf{K}(\mathbf{x},\mathbf{y})\mathsf{H}(\mathbf{x},\mathbf{y}) = \mathbf{I}(\mathbf{x}) - \mathsf{J}(\mathbf{y})$$

would probably be easier to solve. The pair (|(x), J(y)) is a pair of invariants.
(1) Constructing invariants from the equation

$$K(x,y)(y-1)Q(x,y) = y - 1 - \frac{ty^3}{x-y}Q(y,y) - t\frac{xQ(x,1) - Q(1,1)}{x-1}$$

 $\hookrightarrow K(\mathbf{x},\mathbf{y})H(\mathbf{x},\mathbf{y}) = \mathbf{I}_1(\mathbf{x}) - \mathbf{J}_1(\mathbf{y}) ?$

(1) Constructing invariants from the equation

$$\begin{split} \mathsf{K}(\mathbf{x},\mathbf{y})(\mathbf{y}-1)\mathsf{Q}(\mathbf{x},\mathbf{y}) &= \mathsf{y}-1 - \frac{\mathsf{t} \mathsf{y}^3}{\mathsf{x}-\mathsf{y}}\mathsf{Q}(\mathbf{y},\mathbf{y}) - \mathsf{t} \, \frac{\mathsf{x}\mathsf{Q}(\mathbf{x},1) - \mathsf{Q}(1,1)}{\mathsf{x}-1} \\ & \hookrightarrow \quad \mathsf{K}(\mathbf{x},\mathbf{y})\mathsf{H}(\mathbf{x},\mathbf{y}) = \mathsf{I}_1(\mathbf{x}) - \mathsf{J}_1(\mathbf{y}) \;\;? \\ \\ \mathsf{Let} \\ & \mathsf{I}_1(\mathbf{x}) = \frac{2+\mathsf{x}}{\mathsf{t}} + \frac{1}{\mathsf{t}^2\mathsf{x}} + \frac{1}{\mathsf{t}(\mathsf{t}\mathsf{x}-1)} - \frac{\mathsf{t}\mathsf{x}}{1-\mathsf{t}\mathsf{x}} \frac{\mathsf{x}\mathsf{Q}(\mathsf{x},1) - \mathsf{Q}(1,1)}{\mathsf{x}-1}, \\ & \mathsf{J}_1(\mathbf{y}) = \frac{\mathsf{y}}{\mathsf{t}} - \frac{1}{\mathsf{t}(\mathsf{y}-1)} + \frac{1}{\mathsf{t}^2\mathsf{y}} + \mathsf{y}(\mathsf{y}-1)\mathsf{Q}(\mathsf{y},\mathsf{y}). \end{split}$$

(1) Constructing invariants from the equation

$$\begin{split} \mathsf{K}(x,y)(y-1)Q(x,y) &= y - 1 - \frac{ty^3}{x-y}Q(y,y) - t\,\frac{xQ(x,1) - Q(1,1)}{x-1} \\ &\hookrightarrow \ \mathsf{K}(x,y)\mathsf{H}(x,y) = I_1(x) - J_1(y) \ ? \\ \text{-et} \\ I_1(x) &= \frac{2+x}{t} + \frac{1}{t^2x} + \frac{1}{t(tx-1)} - \frac{tx}{1-tx}\frac{xQ(x,1) - Q(1,1)}{x-1}, \\ J_1(y) &= \frac{y}{t} - \frac{1}{t(y-1)} + \frac{1}{t^2y} + y(y-1)Q(y,y). \end{split}$$

This is a pair of invariants:

$$\mathbf{I}_{1}(\mathbf{x}) - \mathbf{J}_{1}(\mathbf{y}) = \frac{(x-y)(y-1)K(x,y)}{1-tx} \left(\frac{xQ(x,y)-yQ(y,y)}{x-y} - \frac{1-txy}{t^{2}xy(y-1)} \right)$$

٠

(2) Constructing invariants from the kernel

The kernel: $K(x,y) = 1 - tx - \frac{txy^2}{(x-y)(y-1)}.$ Let $I_0(x) = \frac{1}{1-tx} - \frac{1}{tx^2} + \frac{1+t}{tx} + x(1-t) - tx^2$ $J_0(y) = -\frac{t}{(y-1)^2} + \frac{1-t}{y-1} - \frac{1}{ty^2} + \frac{1+t}{y}.$

(2) Constructing invariants from the kernel

The kernel:

$$K(x,y) = 1 - tx - \frac{txy^2}{(x-y)(y-1)}.$$
Let

$$I_0(x) = \frac{1}{1-tx} - \frac{1}{tx^2} + \frac{1+t}{tx} + x(1-t) - tx^2$$

$$J_0(y) = -\frac{t}{(y-1)^2} + \frac{1-t}{y-1} - \frac{1}{ty^2} + \frac{1+t}{yt} + y.$$

This is a pair of invariants:

$$I_0(x) - J_0(y) = \frac{(x - y)(1 - y + txy)(x + y - xy - xyt(1 + x - xy))}{x^2y^2t(xt - 1)(y - 1)}K(x, y).$$

(2) Constructing invariants from the kernel

The kernel:

$$K(x,y) = 1 - tx - \frac{txy^2}{(x-y)(y-1)}.$$
Let

$$I_0(x) = \frac{1}{1-tx} - \frac{1}{tx^2} + \frac{1+t}{tx} + x(1-t) - tx^2$$

$$J_0(y) = -\frac{t}{(y-1)^2} + \frac{1-t}{y-1} - \frac{1}{ty^2} + \frac{1+t}{yt} + y.$$

This is a pair of invariants:

$$I_0(x) - J_0(y) = \frac{(x - y)(1 - y + txy)(x + y - xy - xyt(1 + x - xy))}{x^2y^2t(xt - 1)(y - 1)}K(x, y).$$

Construction? A group of order 10 generated by two birational involutions of (x,y) leaves the kernel unchanged. Play with the group and the roots of the kernel.

Let

$$J_{0}(y) = -\frac{1}{ty^{2}} + \frac{1+t}{ty} - \frac{t}{(y-1)^{2}} + \frac{1-t}{y-1} + y$$
$$J_{1}(y) = \frac{1}{t^{2}y} + \frac{y}{t} - \frac{1}{t(y-1)} + y(y-1)Q(y,y).$$

Let $J_{0}(y) = -\frac{1}{ty^{2}} + \frac{1+t}{ty} - \frac{t}{(y-1)^{2}} + \frac{1-t}{y-1} + y$ $J_{1}(y) = \frac{1}{t^{2}y} + \frac{y}{t} - \frac{1}{t(y-1)} + y(y-1)Q(y,y).$

Then the series

$$J_0(y) + t^3 J_1(y)^2 - t(1+3t)J_1(y)$$

(no pole at y=0, 1) is independent of y

Let $J_{0}(y) = -\frac{1}{ty^{2}} + \frac{1+t}{ty} - \frac{t}{(y-1)^{2}} + \frac{1-t}{y-1} + y$ $J_{1}(y) = \frac{1}{t^{2}y} + \frac{y}{t} - \frac{1}{t(y-1)} + y(y-1)Q(y,y).$

Then the series

$$J_0(y) + t^3 J_1(y)^2 - t(1+3t)J_1(y)$$

(no pole at y=0, 1) is independent of y

Argument: invariants with no poles are constant

Let $J_{0}(y) = -\frac{1}{ty^{2}} + \frac{1+t}{ty} - \frac{t}{(y-1)^{2}} + \frac{1-t}{y-1} + y$ $J_{1}(y) = \frac{1}{t^{2}y} + \frac{y}{t} - \frac{1}{t(y-1)} + y(y-1)Q(y,y).$

Then the series

$$J_0(y) + t^3 J_1(y)^2 - t(1+3t)J_1(y)$$

(no pole at y=0, 1) is independent of y , and thus equal to $2-4t-2t^2Q(1,1) \label{eq:2}$ (value at y=1).

Argument: invariants with no poles are constant

(4) An equation for Q(y,y) -- Algebraicity

$$J_0(y) + t^3 J_1(y)^2 - t(1+3t)J_1(y) = 2 - 4t - 2t^2 Q(1,1)$$

 $\hookrightarrow y^{2}t^{2}(y-1)^{2}Q(y,y)^{2} + (y(2y^{2}-5y+1)t - (y-1)(y-2))Q(y,y)$ + 2tQ(1,1) + (y-1)(y-2) = 0.

(4) An equation for Q(y,y) -- Algebraicity

$$J_0(y) + t^3 J_1(y)^2 - t(1+3t)J_1(y) = 2 - 4t - 2t^2 Q(1,1)$$

 $\hookrightarrow y^{2}t^{2}(y-1)^{2}Q(y,y)^{2} + (y(2y^{2}-5y+1)t - (y-1)(y-2))Q(y,y)$ + 2tQ(1,1) + (y-1)(y-2) = 0.

- → A single "catalytic" variable, y
- \rightarrow Unknown series Q(y,y) and Q(1,1)

(4) An equation for Q(y,y) -- Algebraicity

$$J_0(y) + t^3 J_1(y)^2 - t(1+3t)J_1(y) = 2 - 4t - 2t^2 Q(1,1)$$

 $\hookrightarrow y^{2}t^{2}(y-1)^{2}Q(y,y)^{2} + (y(2y^{2}-5y+1)t - (y-1)(y-2))Q(y,y)$ +2tQ(1,1) + (y-1)(y-2) = 0.

- → A single "catalytic" variable, y
- \rightarrow Unknown series Q(y,y) and Q(1,1)
- → Systematic algebraic solution [Brown 65, mbm-Jehanne 06]

 $\begin{array}{l} 64 \ t^{6} Q_{11}^{3} + 16 t^{3} \left(11 t^{2} - 18 t - 1\right) Q_{11}^{2} + \left(161 t^{4} - 452 t^{3} + 238 t^{2} - 28 t + 1\right) Q_{11} \\ + 49 \ t^{3} - 167 t^{2} + 25 t = 1. \end{array}$

III. m-Dyck paths, and mirrored m-Dyck paths

m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of each ascent is a multiple of m.

m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of each ascent is a multiple of m. In a mirrored m-Dyck path, the length of each descent is a multiple of m.

m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of each ascent is a multiple of m. In a mirrored m-Dyck path, the length of each descent is a multiple of m.

→ Study the order induced by the ascent order on m-Dyck paths and mirrored m-Dyck paths of size mn.

m-Dyck paths

m-Dyck paths

m-Dyck paths form an interval in the ascent lattice Amn.

In particular, it is a lattice.

Mirrored m-Dyck paths

Mirrored m-Dyck paths only form a join semi-lattice.

What about intervals?

What about intervals?

Intervals in m-Dyck paths:

• Stanley lattice: D-finite GF (i.e., linear DE with pol. coeffs)

 $\frac{2(m+2)((m+1)n)!((m+1)(n+1))!}{n!(n+1)!(mn+2)!(m(n+2)+2)!}$

• Tamari lattice: algebraic GF [mbm, Fusy, Préville-Ratelle 11]

$$\frac{m+1}{n(mn+1)}\binom{(m+1)^2n+m}{n-1}$$

Conj: Bergeron, Préville-Ratelle

Greedy Tamari lattice: algebraic GF

[mbm, Chapoton 24]

$$\frac{(m+2)(m+1)^{n-1}}{(mn+1)(mn+2)}\binom{(m+1)n}{n}.$$

Two families of functional equations

→ m-Dyck paths: last peak decomposition $Q(x,y) = 1 + tx^{m}Q(x,y)$ $+ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}$

Two families of functional equations

- → m-Dyck paths: last peak decomposition $Q(x,y) = 1 + tx^{m}Q(x,y)$ $+ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}$
- Mirrored m-Dyck paths: first peak decomposition

$$\overline{Q}(x,y) = 1 + tx^{m} \frac{y\overline{Q}(x,y) - \overline{Q}(x,1)}{y-1} + ty^{2} \frac{x^{m}\overline{Q}(x,y) - \overline{Q}(1,y)}{(x-1)(y-1)} - t \frac{x^{m}\overline{Q}(x,1) - \overline{Q}(1,1)}{(x-1)(y-1)}$$

Two families of functional equations

- → m-Dyck paths: last peak decomposition $Q(x,y) = 1 + tx^{m}Q(x,y)$ $+ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}$
- Mirrored m-Dyck paths: first peak decomposition

$$\overline{Q}(x,y) = 1 + tx^{m} \frac{y\overline{Q}(x,y) - \overline{Q}(x,1)}{y-1} + ty^{2} \frac{x^{m}\overline{Q}(x,y) - \overline{Q}(1,y)}{(x-1)(y-1)} - t \frac{x^{m}\overline{Q}(x,1) - \overline{Q}(1,1)}{(x-1)(y-1)}$$

→ No exact solution, but explicit asymptotic results ⇒ not algebraic, not D-finite for m>1 (i.e. no linear diff. equation)

• Asymptotics (from random walk results) [Denisov & Wachtel 15]

 $g_m(n) \sim \kappa \mu^n n^{\alpha},$

where $\mu = \frac{m\sqrt{m^2 + 4} + m^2 + 2}{2} \cdot \left(\frac{2 + \sqrt{m^2 + 4}}{m}\right)^m$ and $\alpha = -1 - \pi/\arccos(c) \quad \text{with} \quad c = \sqrt{\frac{m^2 + 2 - \sqrt{m^2 + 4}}{2m^2 + 6}}.$

• Asymptotics (from random walk results) [Denisov & Wachtel 15]

 $g_m(n) \sim \kappa \mu^n n^{\alpha},$

where
$$\label{eq:main_state} \begin{split} \mu &= \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m \\ \text{and} \\ \alpha &= -1-\pi/\arccos(c) \qquad \text{with} \qquad c = \sqrt{\frac{m^2+2-\sqrt{m^2+4}}{2m^2+6}}. \end{split}$$

A deep result in the theory of Siegel's G-functions: If the associated GF is D-finite, then α is rational. [Bostan, Raschel, Salvy 14]

• Asymptotics (from random walk results) [Denisov & Wachtel 15]

 $g_m(n) \sim \kappa \mu^n n^{\alpha},$

where
$$\label{eq:main_state} \begin{split} \mu &= \frac{m\sqrt{m^2+4}+m^2+2}{2} \cdot \left(\frac{2+\sqrt{m^2+4}}{m}\right)^m \\ \text{and} \\ \alpha &= -1-\pi/\arccos(c) \qquad \text{with} \qquad c = \sqrt{\frac{m^2+2-\sqrt{m^2+4}}{2m^2+6}}. \end{split}$$

A deep result in the theory of Siegel's G-functions: If the associated GF is D-finite, then α is rational. [Bostan, Raschel, Salvy 14]

For m>1, the exponent α is irrational, and hence the GF of intervals cannot be D-finite.

• Asymptotics (from random walk results) [Denisov & Wachtel 15]

$$g_{\mathfrak{m}}(\mathfrak{n})\sim\kappa\mu^{\mathfrak{n}}\mathfrak{n}^{\alpha},$$

where
$$\begin{split} \mu &= \frac{m\sqrt{m^2 + 4} + m^2 + 2}{2} \cdot \left(\frac{2 + \sqrt{m^2 + 4}}{m}\right)^m \\ \text{and} \\ \alpha &= -1 - \pi/\arccos(c) \quad \text{with} \quad c = \sqrt{\frac{m^2 + 2 - \sqrt{m^2 + 4}}{2m^2 + 6}}. \end{split}$$

A deep result in the theory of Siegel's G-functions: If the associated GF is D-finite, then α is rational. [Bostan, Raschel, Salvy 14]

> For m>1, the exponent α is irrational, and hence the GF of intervals cannot be D-finite.

Contrast with m-Tamari lattices, where intervals have an algebraic GF

IV. Connection with the sylvester congruence

[Hivert, Novelli, Thibon 05]

Two families of functional equations

→ m-Dyck paths: last peak decomposition $Q(x,y) = 1 + tx^{m}Q(x,y)$ $+ty^{2} \frac{x^{m}Q(x,y) - y^{m}Q(y,y)}{(x-y)(y-1)} - t \frac{x^{m}Q(x,1) - Q(1,1)}{(x-1)(y-1)}$

Mirrored m-Dyck paths: first peak decomposition

$$\overline{Q}(x,y) = 1 + tx^{m} \frac{y\overline{Q}(x,y) - \overline{Q}(x,1)}{y-1} + ty^{2} \frac{x^{m}\overline{Q}(x,y) - \overline{Q}(1,y)}{(x-1)(y-1)} - t \frac{x^{m}\overline{Q}(x,1) - \overline{Q}(1,1)}{(x-1)(y-1)}$$

 \rightarrow produce numbers

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

• m=1: number of sylvester classes of 1-multiparking functions

Search: seq :	1,3,13,69,417,2759 id:243688	
Displaying 1	-1 of 1 result found.	ł
Sort: releva	nce <u>references</u> <u>number</u> <u>modified</u> <u>created</u> Format: long <u>short</u> <u>data</u>	
A243688	Number of Sylvester classes of 1-multiparking functions of length n.	
1, 3, 13 (<u>list</u> ; <u>graph</u> ;	, 69, 417, 2759 ; <u>refs</u> ; <u>listen</u> ; <u>history</u> ; <u>text</u> ; <u>internal format</u>)	
OFFSET	1,2	
COMMENTS	See Novelli-Thibon (2014) for precise definition.	
LINKS	Table of n, a(n) for n=16. JC. Novelli, JY. Thibon, <u>Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions</u> arXiv preprint arXiv:1403.5962, 2014. See Fig. 26.	5,
KEYWORD	nonn,more	
AUTHOR	<u>N. J. A. Sloane</u> , Jun 14 2014	
STATUS	approved	

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

- m=1: number of sylvester classes of 1-multiparking functions
- m=2: number of sylvester classes of 2-multiparking functions

Search: seq:1,5,40,407,4797 id:243671

Jisplaying 1-1 of 1 result found.		
Sort: relevand	e <u>references</u> <u>number</u> <u>modified</u> <u>created</u> Format: long <u>short</u> <u>data</u>	
A243671 N	umber of Sylvester classes of 2-parking functions of length n.	
1, 5, 40, 407, 4797 (<u>list</u> ; <u>graph</u> ; <u>refs</u> ; <u>listen</u> ; <u>history</u> ; <u>text</u> ; <u>internal format</u>)		
OFFSET	1,2	
COMMENTS	See Novelli-Thibon (2014) for precise definition.	
LINKS	<u>Table of n, a(n) for n=15.</u> JC. Novelli, JY. Thibon, <u>Hopf Algebras of m-permutations, (m+1)-ary trees, and m-parking functions</u> , preprint arXiv:1403.5962, 2014. See Fig. 21.	
KEYWORD	nonn,more	
AUTHOR	<u>N. J. A. Sloane</u> , Jun 14 2014	
STATUS	approved	

Observation: for m=1, 2, ..., 5, the sequence $\overline{g}_m(n)$ that counts intervals of mirrored m-Dyck paths appears in the OEIS.

- m=1: number of sylvester classes of 1-multiparking functions
- m=2: number of sylvester classes of 2-multiparking functions

and so on.

Gearch: seq:1,5,40,407,4797 id:243671
Displaying 1-1 of 1 result found.
Sort: relevance <u>references</u> <u>number</u> <u>modified</u> <u>created</u> Format: long <u>short</u> <u>data</u>
<u>A243671</u> Number of Sylvester classes of 2-parking functions of length n.
1, 5, 40, 407, 4797 (<u>list; graph; refs; listen; history; text; internal format</u>)
OFFSET 1,2
COMMENTS See Novelli-Thibon (2014) for precise definition.
LINKS <u>Table of n, a(n) for n=15.</u> JC. Novelli, JY. Thibon, <u>Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</u> , preprint arXiv:1403.5962, 2014. See Fig. 21.
KEYWORD nonn,more
AUTHOR N. J. A. Sloane, Jun 14 2014
STATUS approved

The sylvester congruence

- \bullet Defined on words on the alphabet $\mathbb Z$
- Generated by commutation relations:

```
ac \cdots b \equiv ca \cdots b, \quad a \leq b < c.
```

- Class representatives: words avoiding subwords acb with $a \leq b < c$,
- called sylvester words.
The sylvester congruence

- \bullet Defined on words on the alphabet $\mathbb Z$
- Generated by commutation relations:

```
ac \cdots b \equiv ca \cdots b, \quad a \leq b < c.
```

• Class representatives: words avoiding subwords acb with $a \le b < c$, called sylvester words.

Example:

 $\mathbf{24533} \rightarrow \mathbf{42533}$

The sylvester congruence

- \bullet Defined on words on the alphabet $\mathbb Z$
- Generated by commutation relations:

```
ac \cdots b \equiv ca \cdots b, \quad a \leq b < c.
```

• Class representatives: words avoiding subwords acb with a \leq b < c, called sylvester words.

Example:

 $24533 \rightarrow 42533$ $42533 \rightarrow 45233$, sylvester word

The sylvester congruence

- \bullet Defined on words on the alphabet $\mathbb Z$
- Generated by commutation relations:

```
ac \cdots b \equiv ca \cdots b, \quad a \leq b < c.
```

Class representatives: words avoiding subwords acb with a ≤ b < c,
 called sylvester words.

Example:

 $24533 \rightarrow 42533$ $42533 \rightarrow 45233$, sylvester word

A general correspondance between sylvester words and intervals of **a larger poset**.

The Nadeau-Tewari lattice NTn

Def. Let $u=(u_1, ..., u_n)$ and $v=(v_1, ..., v_n)$ be two nonincreasing sequences of integers. Then $u \leq v$ for the NT order if

- u lies below v ($u_i \leq v_i$)
- every descent of v is a descent of u.

The Nadeau-Tewari lattice NTn

Def. Let $u=(u_1, ..., u_n)$ and $v=(v_1, ..., v_n)$ be two nonincreasing sequences of integers. Then $u \leq v$ for the NT order if

- u lies below v ($u_i \leq v_i$)
- every descent of v is a descent of u.

The Nadeau-Tewari lattice NT_n

Def. Let $u=(u_1, ..., u_n)$ and $v=(v_1, ..., v_n)$ be two nonincreasing sequences of integers. Then $u \leq v$ for the NT order if

- u lies below v ($u_i \leq v_i$)
- every descent of v is a descent of u.

The Nadeau-Tewari lattice NTn

Def. Let $u=(u_1, ..., u_n)$ and $v=(v_1, ..., v_n)$ be two nonincreasing sequences of integers. Then $u \leq v$ for the NT order if

- u lies below v ($u_i \leq v_i$)
- every descent of v is a descent of u.

The Nadeau-Tewari lattice NTn

Def. Let $u=(u_1, ..., u_n)$ and $v=(v_1, ..., v_n)$ be two nonincreasing sequences of integers. Then $u \leq v$ for the NT order if

L2024」

- u lies below v ($u_i \leq v_i$)
- every descent of v is a descent of u.
- **Observation:** the ascent lattice A_n is the **interval** in the lattice NT_n with min=(n,n-1,..., 1) and max=(n,n, ..., n)

Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, ..., n}, containing the letter 1, say w = **32** 2 2 2 5 **1**115.

Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Let $w_1 = Nlnc(w) = 5532222111$ be its nonincreasing reordering.

Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, ..., n}, containing the letter 1, say w = **32** 2 2 2 5 **1**115.

Let $w_1 = Nlnc(w) = 5532222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 3222221111$ be the largest nonincreasing word that is smaller than w, componentwise.

Example. Fix n=6 and a sylvester word w on the alphabet $\{1, 2, ..., n\}$, containing the letter 1, say w = 322251115.

Let $w_1 = Nlnc(w) = 5532222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 3222221111$ be the largest nonincreasing word that is smaller than w, componentwise.

• Write w_1 and w_2 vertically as follows:

Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, ..., n}, containing the letter 1, say w = **32** 2 2 2 5 **1**115.

Let $w_1 = Nlnc(w) = 5532222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 3222221111$ be the largest nonincreasing word that is smaller than w, componentwise.

- Write w_1 and w_2 vertically as follows:
- Complete with n=6 horizontal steps to form two ES paths.

Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, ..., n}, containing the letter 1, say w = **32** 2 2 2 5 **1**115.

Let $w_1 = Nlnc(w) = 5532222111$ be its nonincreasing reordering.

Let $w_2 = LRMin(w) = 3222221111$ be the largest nonincreasing word that is smaller than w, componentwise.

- Write w_1 and w_2 vertically as follows:
- Complete with n=6 horizontal steps to form two ES paths.
- The horizontal words **u = 10 10 8 8 7 3** and **v = 10 10 10 10 9 4**, of length n=6, form an interval in the Nadeau-Tewari lattice.

Proposition. For any n, this is a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice of size n, such that u and v have positive entries and the same first letter.

Example For n=6 and w = 3222251115, we have u= 10108873 and v= 1010101094.

Conversely?

Proposition. For any n, this is a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice of size n, such that u and v have positive entries and the same first letter.

Specializations: bijections between

- positive sylvester words w of length mn such that $N(w) \le n^m (n-1)^m \dots 2^m 1^m$ and ascent intervals of m-Dyck paths of length mn
- positive sylvester words w of length n such that Nlnc(w) ≤ ((n-1)m+1) ... (2m+1) (m+1) 1 and ascent intervals of mirrored m-Dyck paths of length mn.

Proposition. For any n, this is a bijection between:

- sylvester words w on the alphabet {1, 2, ..., n} containing the letter 1, and
- intervals [u,v] in the NT lattice of size n, such that u and v have positive entries and the same first letter.

Specializations: bijections between

- positive sylvester words w of length mn such that $N(w) \le n^m (n-1)^m \dots 2^m 1^m$ and ascent intervals of m-Dyck paths of length mn
- positive sylvester words w of length n such that Nlnc(w) ≤ ((n-1)m+1) ... (2m+1) (m+1) 1 and ascent intervals of mirrored m-Dyck paths of length mn.

Sylvester classes of m-multiparking functions [Novelli, Thibon 20]

• Combinatorial proof for the number/GF of ascent intervals? (m=1) $(n+4)(2n+7)g(n+2) = 2(11n^2 + 44n + 42)g(n+1) + n(2n+1)g(n)$

A symmetric joint distribution on ascent intervals [P,Q] (m=1):
 a(P) = length of the first ascent of P
 r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1, r(P,Q)=2 (Non-recursive) bijection?

- A symmetric joint distribution on ascent intervals [P,Q] (m=1):
 a(P) = length of the first ascent of P
 r(P,Q) = number of ascents of P before the first descent of Q
- **D-algebraicity** for m-Dyck paths, m>1?

- A symmetric joint distribution on ascent intervals [P,Q] (m=1):
 a(P) = length of the first ascent of P
 r(P,Q) = number of ascents of P before the first descent of Q
- **D-algebraicity** for m-Dyck paths, m>1?
- Chains of length 3 in the ascent lattice? of length d?

- A symmetric joint distribution on ascent intervals [P,Q] (m=1):
 a(P) = length of the first ascent of P
 r(P,Q) = number of ascents of P before the first descent of Q
- **D-algebraicity** for m-Dyck paths, m>1?
- Chains of length 3 in the ascent lattice? of length d?
- Study mirrored m-Dyck paths in other Dyck lattices: intervals?

• Combinatorial proof for the number/GF of ascent intervals? (m=1) $(n + 4) (2n + 7) g(n + 2) = 2 (11n^2 + 44n + 42) g(n + 1) + n (2n + 1) g(n)$

A symmetric joint distribution on ascent intervals [P,Q] (m=1):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

- **D-algebraicity** for m-Dyck paths, m>1?
- Chains of length 3 in the ascent lattice? of length d?
- Study mirrored m-Dyck paths in other Dyck lattices: intervals?
- Poset properties? (shellability, geometric realizations...)

• Combinatorial proof for the number/GF of ascent intervals? (m=1) $(n + 4) (2n + 7) g(n + 2) = 2 (11n^2 + 44n + 42) g(n + 1) + n (2n + 1) g(n)$

A symmetric joint distribution on ascent intervals [P,Q] (m=1):
 a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

Thanks for

your

atto

- **D-algebraicity** for m-Dyck paths, m>1?
- Chains of length 3 in the ascent lattice? of length
- Study mirrored m-Dyck paths in other Dyck lattices: Interview
- Poset properties? (shellability, geometric realizations...)