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Outline

 A new family of lattices An

 Interval counting
 Interesting subposets and their intervals
 Connection with sylvester congruence classes 
[Hivert, Novelli, Thibon 05]



I. Two orders on 
Dyck paths
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Dyck paths

● A Dyck path of size n=8 (size=number of up steps)

valleys (DU)

U U D D U U U U D U U D D D D D

peak (UD)
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Many posets on Dyck paths of size n

Greedy Tamari
[Dermenjian 23]

Kreweras 72

Pyramid
[Baril et al. 23(a)]

Tamari 51

alt-Tamari
[Chenevière 22(a)]

Ascent

Stanley

⊂

Poset = partially ordered set

⊂

⊂
⊂

⊂
⊂

⊂⊂
⊂
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Many posets on Dyck paths of size n

Greedy Tamari
[Dermenjian 23]

Kreweras 72

Pyramid
[Baril et al. 23(a)]

Tamari 51

alt-Tamari
[Chenevière 22(a)]

Ascent

Stanley

⊂

Poset = partially ordered set

⊂

⊂
⊂

⊂
⊂

⊂⊂
⊂
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The simplest poset: Stanley’s lattice
● A poset on Dyck paths with n up steps
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The simplest poset: Stanley’s lattice
● A poset on Dyck paths with n up steps
● Cover relations (= minimal relations): choose a valley in the path P. 

Swap the  down step  and the  up step  that follows
(the path moves up).                                                 

P Q
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The simplest poset: Stanley’s lattice
● A poset on Dyck paths with n up steps
● Cover relations (= minimal relations): choose a valley in the path P. 

Swap the  down step  and the  up step  that follows
(the path moves up).                                                 

P Q

Characterization: P ≤ Q iff P fits below Q. 
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The simplest poset: Stanley’s lattice

n=3

● A poset on Dyck paths with n up steps
● Cover relations (= minimal relations): choose a valley in the path P. 

Swap the  down step  and the  up step  that follows
(the path moves up).                                                 

Characterization: P ≤ Q iff P fits below Q. 
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The simplest poset: Stanley’s lattice

n=3

● A poset on Dyck paths with n up steps
● Cover relations (= minimal relations): choose a valley in the path P. 

Swap the  down step  and the  up step  that follows
(the path moves up).                                                 

• Lattice structure: existence of sup and inf

Characterization: P ≤ Q iff P fits below Q. 
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The ascent poset (or: greedy Stanley lattice?)
● A poset on Dyck paths with n up steps
● Cover relations: choose a valley in the path P. 

Swap the  down step  and the  ascent  that follows
(the path moves up).
                                                                                    

⋖
P Q

[Chenevière, Nadeau...]
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Ascent posets: n = 3, 4

n=4n=3
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Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

A characterization of the ascent order

Q

P
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Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

A characterization of the ascent order

Q

P
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Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

A characterization of the ascent order

Q

P

Applications:
 lattice structure
 recursive construction of intervals



II. The number of 
intervals

Interval [P,Q] ~ (P,Q) with P ≼ Q
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Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

A characterization of the ascent order

Corollary: if [P,Q] is an interval, deleting the last peak of P and the 
last peak of Q gives a new interval.

Q

P
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Proposition. In the ascent poset, P ≼ Q iff 
 P lies below Q 
 every descent of Q is (i.e. lies on the same diagonal as) 

a descent of P.

A characterization of the ascent order

Corollary: if [P,Q] is an interval, deleting the last peak of P and the 
last peak of Q gives a new interval.

Q

P
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

a a’

b b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1

a a’

b b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’

a a’

b b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

a a’

b b’

P

Q
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

a

b

1
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Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

i=a-1
j=b-a

a

b

i

j

1 0
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intervals of size n 
≈

quadrant walks of length n-1 starting 
from (0,0)

Recursive construction of ascent intervals
Conversely, starting from an interval [P,Q] with final peaks at 
heights a ≤ b, adding peaks in P and Q at heights a’ and b’ gives an 
interval iff...

  1 ≤ a’ ≤ a+1,    1 ≤ b’ ≤  b+1
 a’ ≤ b’
 if a’ = a+1 then b’ = b+1. 

Bijection

i

j

0
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intervals of size n 
≈

quadrant walks of length n-1 starting 
from (0,0)

Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

Bijection

i

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

i

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

i

j

0
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:
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• Well understood: algebraic/differential properties of 
quadrant walks with finitely many small steps   
[Bernardi, Bostan, mbm, Raschel, Mishna, Zeilberger, 
Kauers, Hardouin, Dreyfus, Roques, Singer, Elvey Price… ]

Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:
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• Well understood: algebraic/differential properties of 
quadrant walks with finitely many small steps   
[Bernardi, Bostan, mbm, Raschel, Mishna, Zeilberger, 
Kauers, Hardouin, Dreyfus, Roques, Singer, Elvey Price… ]

Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

Asymptotics:
with 

Thm. Ascent intervals have an algebraic GF, namely 

                                                                                        where
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Recursive construction of ascent intervals
• Let Q(t;x,y)=Q(x,y) be the GF of the associated quadrant walks:

Then the GF of ascent intervals is G=tQ(1,1).

• Step-by-step description of the walks:

Asymptotics:
with 

Thm. Ascent intervals have an algebraic GF, namely 

                                                                                        whereTutte’s invariants

[Bernardi, mbm, Raschel 21]
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• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

where

A functional equation with two “catalytic” variables
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• Observation: an equation of the form

would probably be easier to solve.
The pair (I(x),J(y)) is a pair of invariants.

• The GF of ascent intervals is tQ(1,1), where Q(x,y)=Q(t;x,y) satisfies:

where

A functional equation with two “catalytic” variables
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(1) Constructing invariants from the equation

↪
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(1) Constructing invariants from the equation

Let
↪
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(1) Constructing invariants from the equation

This is a pair of invariants:

Let
↪
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(2) Constructing invariants from the kernel
The kernel:

Let
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(2) Constructing invariants from the kernel
The kernel:

Let

This is a pair of invariants:
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(2) Constructing invariants from the kernel
The kernel:

Let

This is a pair of invariants:

Construction?
A group of order 10 generated by two birational involutions of (x,y) 
leaves the kernel unchanged.
Play with the group and the roots of the kernel.
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(3) Relating invariants

Let
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(3) Relating invariants

Let

Then the series 

(no pole at y=0, 1)  is independent of y
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(3) Relating invariants

Let

Then the series 

(no pole at y=0, 1)  is independent of y

Argument: invariants with no poles are constant
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(3) Relating invariants

Let

Then the series 

(no pole at y=0, 1)  is independent of y

Argument: invariants with no poles are constant

, and thus equal to

(value at y=1).
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(4) An equation for Q(y,y) -- Algebraicity

↪
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(4) An equation for Q(y,y) -- Algebraicity

➔ A single “catalytic” variable, y
➔ Unknown series Q(y,y) and Q(1,1)

↪
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(4) An equation for Q(y,y) -- Algebraicity

➔ A single “catalytic” variable, y
➔ Unknown series Q(y,y) and Q(1,1)
➔ Systematic algebraic solution   [Brown 65, mbm-Jehanne 06]

↪



III. m-Dyck paths,
and mirrored m-Dyck paths
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m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of each ascent is a multiple of m.

m=2
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m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of each ascent is a multiple of m.
In a mirrored m-Dyck path, the length of each descent is a multiple of m.

m=2
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m-Dyck paths and mirrored m-Dyck paths

In an m-Dyck path, the length of each ascent is a multiple of m.
In a mirrored m-Dyck path, the length of each descent is a multiple of m.

m=2

 → Study the order induced by the ascent order on m-Dyck paths 
and mirrored m-Dyck paths of size mn.
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m-Dyck paths

m=2

n=2
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m-Dyck paths

m-Dyck paths form an interval 
in the ascent lattice Amn.

In particular, it is a lattice.

m=2

n=2
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Mirrored m-Dyck paths

Mirrored m-Dyck paths only 
form a join semi-lattice. 

m=2

n=2
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What about intervals?
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What about intervals?
Intervals in m-Dyck paths:

 Stanley lattice: D-finite GF (i.e., linear DE with pol. coeffs)

 Tamari lattice: algebraic GF          [mbm, Fusy, Préville-Ratelle 11]

 Greedy Tamari lattice: algebraic GF           [mbm, Chapoton 24]

Conj: Bergeron, Prévil le-Ratelle 



59

➔ m-Dyck paths: last peak decomposition

Intervals of m-Dyck paths and mirrored m-Dyck paths
Two families of functional equations



60

➔ m-Dyck paths: last peak decomposition

➔ Mirrored m-Dyck paths: first peak decomposition

Intervals of m-Dyck paths and mirrored m-Dyck paths
Two families of functional equations
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➔ m-Dyck paths: last peak decomposition

➔ Mirrored m-Dyck paths: first peak decomposition

Intervals of m-Dyck paths and mirrored m-Dyck paths

➔ No exact solution, but explicit asymptotic results ⇒ not algebraic, 
not D-finite for m>1 (i.e. no linear diff. equation)

Two families of functional equations
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Intervals in the m-Dyck ascent lattice
• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and
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Intervals in the m-Dyck ascent lattice
• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

A deep result in the theory of Siegel’s G-functions:
If the associated GF is D-finite, then 𝛼 is rational.
[Bostan, Raschel, Salvy 14]
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For m>1, the exponent 𝛼 is irrational, and hence 
the GF of intervals cannot be D-finite. 

Intervals in the m-Dyck ascent lattice
• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

A deep result in the theory of Siegel’s G-functions:
If the associated GF is D-finite, then 𝛼 is rational.
[Bostan, Raschel, Salvy 14]
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For m>1, the exponent 𝛼 is irrational, and hence 
the GF of intervals cannot be D-finite. 

Intervals in the m-Dyck ascent lattice
• Asymptotics (from random walk results)       [Denisov & Wachtel 15]

where

and

Contrast with m-Tamari lattices, where intervals have an algebraic GF

A deep result in the theory of Siegel’s G-functions:
If the associated GF is D-finite, then 𝛼 is rational.
[Bostan, Raschel, Salvy 14]



IV. Connection with the 
sylvester congruence

[Hivert, Novelli, Thibon 05]
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➔ m-Dyck paths: last peak decomposition

➔ Mirrored m-Dyck paths: first peak decomposition

Intervals of m-Dyck paths and mirrored m-Dyck paths
Two families of functional equations

 → produce numbers
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
• m=2: number of sylvester classes of 2-multiparking functions
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In the OEIS...
Observation: for m=1, 2, …, 5, the sequence gm(n) that counts 
intervals of mirrored m-Dyck paths appears in the OEIS.
• m=1: number of sylvester classes of 1-multiparking functions 
• m=2: number of sylvester classes of 2-multiparking functions

and so on.
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding subwords acb with a ≤ b < c,
called sylvester words.
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding subwords acb with a ≤ b < c,
called sylvester words.

Example:
                      2 4 5 3 3  → 4 2 5 3 3 
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding subwords acb with a ≤ b < c,
called sylvester words.

Example:
                      2 4 5 3 3  → 4 2 5 3 3 
                                           4 2 5 3 3  → 4 5 2 3 3,  sylvester word 
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The sylvester congruence

• Defined on words on the alphabet ℤ
• Generated by commutation relations:

• Class representatives: words avoiding subwords acb with a ≤ b < c,
called sylvester words.

Example:
                      2 4 5 3 3  → 4 2 5 3 3 
                                           4 2 5 3 3  → 4 5 2 3 3,  sylvester word 

A general correspondance between sylvester words 
and intervals of a larger poset.
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The Nadeau-Tewari lattice NTn                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v
v = (10, 10, 10, 10, 9, 4)

u = (10, 10, 8, 8, 7, 3)
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The Nadeau-Tewari lattice NTn                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v
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The Nadeau-Tewari lattice NTn                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v
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The Nadeau-Tewari lattice NTn                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.

2

4

5

6

3

7

8

9

10

u / v

0

n=8

u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)
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The Nadeau-Tewari lattice NTn                     [2024]

Def. Let u=(u1, … , un) and v=(v1, … , vn) be two nonincreasing 
sequences of integers. Then u ≤ v for the NT order if
● u lies below v (ui  ≤ vi)
● every descent of v is a descent of u.
Observation: the ascent lattice An is the interval in the lattice NTn 
with min=(n,n-1,…, 1) and max=(n,n, …, n)

2

4

5

6

3

7

8

9

10

u / v

0

n=8

u = (8, 7, 6, 6, 6, 5, 3, 1)

v = (8, 8, 6, 6, 6, 6, 5, 5)
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

0123456
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

• Complete with n=6 horizontal steps to 
form two ES paths.

0123456
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From sylvester words to Nadeau-Tewari intervals
Example. Fix n=6 and a sylvester word w on the alphabet {1, 2, …, n}, 
containing the letter 1, say w = 3 2 2 2 2 5 1 1 1 5.
Let w1 = NInc(w) = 5 5 3 2 2 2 2 1 1 1  be its nonincreasing reordering.
Let w2 = LRMin(w) = 3 2 2 2 2 2 1 1 1 1  be the largest nonincreasing 
word that is smaller than w, componentwise.

• Write w1 and w2 vertically as follows:

• Complete with n=6 horizontal steps to 
form two ES paths.

• The horizontal words u = 10 10 8 8 7 3 
and v = 10 10 10 10 9 4, of length n=6, form 
an interval in the Nadeau-Tewari lattice.

012345
0
1
2

4
5
6

3

6

7
8
9

10
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this is a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice of size n, such that u and v 
have positive entries and the same first letter.

012345
0
1
2

4
5
6

3

6

7
8
9

10

Example
For n=6 and w = 3 2 2 2 2 5 1 1 1 5, we 
have u= 10 10 8 8 7 3 and  v= 10 10 10 10 9 4.

Conversely?
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this is a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice of size n, such that u and v 
have positive entries and the same first letter.

Specializations: bijections between
 positive sylvester words w of length mn such that 

NInc(w) ≤ nm (n-1)m … 2m 1m and ascent intervals of m-Dyck paths 
of length mn

 positive sylvester words w of length n such that 
NInc(w) ≤ ((n-1)m+1) … (2m+1) (m+1) 1 and ascent intervals of 
mirrored m-Dyck paths of length mn. 
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From sylvester words to Nadeau-Tewari intervals
Proposition.  For any n, this is a bijection between: 

 sylvester words w on the alphabet {1, 2, …, n} containing the 
letter 1, and 

 intervals [u,v] in the NT lattice of size n, such that u and v 
have positive entries and the same first letter.

Specializations: bijections between
 positive sylvester words w of length mn such that 

NInc(w) ≤ nm (n-1)m … 2m 1m and ascent intervals of m-Dyck paths 
of length mn

 positive sylvester words w of length n such that 
NInc(w) ≤ ((n-1)m+1) … (2m+1) (m+1) 1 and ascent intervals of 
mirrored m-Dyck paths of length mn. OEIS

Sylvester classes of m-multiparking functions [Novelli, Thibon 20]
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Final questions
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Final questions
• Combinatorial proof for the number/GF of ascent intervals? (m=1)
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Final questions
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=1,  r(P,Q)=2
(Non-recursive) bijection?
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Final questions
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

• D-algebraicity for m-Dyck paths, m>1?
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Final questions
• Combinatorial proof for the number/GF of ascent intervals? (m=1)

• A symmetric joint distribution on ascent intervals [P,Q] (m=1): 
a(P) = length of the first ascent of P
r(P,Q) = number of ascents of P before the first descent of Q

• D-algebraicity for m-Dyck paths, m>1?

• Chains of length 3 in the ascent lattice? of length d?
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Thanks for your attention


