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« A new family of lattices An

« Interval counting

« Interesting subposets and their intervals

» Connection with sylvester congruence classes

[Hivert, Novelli, Thibon 05]



l. Two orders on
Dyck paths




Dyck paths

« A Dyck path of size n=8 (size=number of up steps)

valleys (DU) l /

peak (UD)
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Many posets on Dyck paths of size n
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The simplest poset: Stanley’s lattice

« A poset on Dyck paths with n up steps
« Cover relations (= minimal relations): choose a valley in the path P.

Swap the down step and the up step that follows

(the path moves up). /\

Characterization: P < Q iff P fits below Q. T

e |_attice structure: existence of sup and inf A



The ascent poset (or: greedy Stanley lattice?)

« A poset on Dyck paths with n up steps
« Cover relations: choose a valley in the path P.

Swap the down step and the ascent that follows

(the path moves up).

[Cheneviere, Nadeau...]



Ascent posets: n = 3, 4




A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P.
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A characterization of the ascent order

Proposition. In the ascent poset, P < Q iff

¢ Plies below Q

¢ every descent of Q is (i.e. lies on the same diagonal as)
a descent of P,

Applications:
. lattice structure
« recursive construction of intervals



1. The number of

intervals

Interval [P,Q] ~ (P,Q) with P < Q
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Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q]1 with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff...

o I1=ad =0t I1=b = btl
e 0 <D
o if a =a+)then b' = b+l
A
A
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Recursive construction of ascent intervals

Conversely, starting from an interval [P,Q]1 with final peaks at
heights a = b, adding peaks in P and Q at heights a' and b’ gives an
interval iff..

o I1=ad =0t I1=b = btl
e O <D

o if @' =a+)then b'=b+l.
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Recursive construction of ascent intervals

e Let Q(tix,y)=Q(x,y) be the GF of the associated quadrant walks:

Q(X, y) — Z t|W|X1(W)yJ (w) .
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Recursive construction of ascent intervals

e Let Q(tix,y)=Q(x,y) be the GF of the associated quadrant walks:

Q(x,y) Z !

Then the GF of ascent intervals is G=tQ(),)).

* Step-by-step description of the walks:
2 XQ0,y) —yQly,y)  xQx, 1) —Q(, 1)

Qb y) = T4+ xQbo Y+ 1™ = vy 1) x—1y—1

Thm. Ascent intervals have an algebraic GF, namely

G=tQ(1,1) =Z(1—-2Z+2Z3%), where Z=1t(1+2Z)(1+2Z)>.

Asymptotics:
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Recursive construction of ascent intervals

e Let Q(tix,y)=Q(x,y) be the GF of the associated quadrant walks:

Q(x,y) Z Vit

Then the GF of ascent intervals is G=tQ(),)).

* Step-by-step description of the walks:
2 XQ0,y) —yQly,y)  xQx, 1) —Q(, 1)

QU y) =T+l y) + 1™ == = vy =) x—1{y—1)

Thm. Ascent intg

G =tQ(1,1)

Asymptotics:

o (P ——



A functional equation with two “catalytic® variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:

3 1)—Q(1,1
K(x,y)(y—1)Q(x,y)=y_1_thy xQ(x, X)_ ]Q( 1)

where




A functional equation with two “catalytic® variables

* The GF of ascent intervals is tQ(),)), where Q(x,y)=Q(tix,y) satisfies:

3 —
K% ully — QU Y) =y =1 = - Qlyyy) — ¢ XL
where 2
1y XYy
A e T Y )

e Observation: an equation of the form
Kix,y)JH(x,y) = 1(x) = J(y)

would probably be easier to solve.
The pair (I(x),J(y)) is a pair of invariants.
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(2) Constructing invariants from the kernel

The kernel: txy?
Koow) =1 -0~ Gy
Let
1 1 1+t
Iy(x) = _ 1 t) — 2
o () 1 —tx  tx? tx x| t)—tx
t 1 —+¢ ] 14+t
Joly) = - oy



(2) Constructing invariants from the kernel

The kernel: txu2
Koy) =1 —te— Sy,
Let
1 1 1+t
o () 1] —tx tx? tx x| -t
t 1 —1¢ ] 1+t
Joly) = — —— — — t+t——+Yy

y—12 "y—1 w2 yt
This is a pair of invariants:
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(2) Constructing invariants from the kernel

The kernel: txu2
Koy) =1 —te— Sy,
Let
1 1 1+t
o(X) T —tx  tx? tx +x(1—1) —tx
t 1 —1t 1 1+t
Joly) = — —— — —+t—+Yy

y—12 "y—1 w2 yt
This is a pair of invariants:

~ (x=y)(l =y +txy)(x+y —xy —xyt(l +x —xy))
IO(X)_]O(H) — Xzyzt(xt—ﬂ(y—” K(X>U)

Construction?

A group of order 10 generated by two birational involutions of (x,y)
leaves the kernel unchanged.

Play with the group and the roots of the kernel.
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Let
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PO T Ty e Ty Y
] y 1 :
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(3) Relating invariants

Let IR EE: t 1—t
T A
1 y 1
Jily) = 2y +1 A— +yly—1)Qly,y).

Then the series
Jo(y) + T (y)* — t(1 +3t)]1 (y)

(no pole at y=0, 1) is independent of y , and thus equal to

2 —4t—2t*Q(1,1)
(value at y=).

Argument: invariants with no poles are constant



(4) An equation for Q(y,y) -- Algebraicity

Jo(y) + 271 (y)* —t(1 +3t)]1(y) = 2 — 4t — 2t*Q(1,1)

o Y y—1°Qyy)? + (y(y? =5y +1)t—(y—1)(y—2) Qly,y)
L2601, 1) + (y—=1) (y—2) = 0.
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(4) An equation for Q(y,y) -- Algebraicity

Jo(y) + 271 (y)* —t(1 +3t)]1(y) = 2 — 4t — 2t*Q(1,1)

o Y y—17Qyy)* + (y(2y? =5y +1)t—(y—1)(y—2)) Qly,y)
+2tQ(1, 1)+ (y—1) (y —2) =0.

> A single “catalytic” variable, y
> Unknown series Q(y,y) and Q(,1)

» Systematic algebraic solution [Brown 65, mbm-Jehanne 06]

64 t°Q3, + 16t3 (1162 — 18t — 1) Q3 + (161t* — 452t> 4 238t% — 28t + 1) Qu
+49 t3 — 167t + 25t = 1.
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m-Dyck paths and mirrored m-Dyck paths

In an , the length of each is a multiple of m.
N a , the length of each is a multiple of m.
m=2

— Study the order induced by the ascent order on m-Dyck paths
and mirrored m-Dyck paths of size mn.



m-Dyck paths




m-Dyck paths

m-Dyck paths form an

in the ascent lattice Ayn.

In particular, it is a




Mirrored m-Dyck paths

Mirrored m-Dyck paths only
form a
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What about intervals?

Intervals in m-Dyck paths:

+ Stanley lattice: (i.e., linear DE with pol. coeff's)

2m+2)(m+T)n)(m+1)(n+1))!
n!n+1)!(mn+2)(mnh+2)+ 2)!

o Tamari lattice: [mbm, Fusy, Preville-Ratelle 1]
m+ 1 (m+1)2n+m> Coni.
) Ber
n(mn+1)< n—1 Prey; Jeron,
eV///e~/QmLe/ o
¢ Greedy Tamari lattice: [mbm, Chapoton 24]

(m+2)(m+ 1) ((m+ 1)n>
(mn +1)(mn + 2) n '



Intervals of m-Dyck paths and mirrored m-Dyck paths

Two families of functional equations

> m-Dyck paths: last peak decomposition
Qlx,y) =1+ tx™Q(x,y)
2 X"QMY) —y™Qly,y) xMQM, 1) —Q(I, 1)
(x—=y)ly—1) (x=T)(y—1)
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Intervals of m-Dyck paths and mirrored m-Dyck paths

Two families of functional equations

> m-Dyck paths: last peak decomposition
Qlx,y) =1+ tx™Q(x,y)
2 X"QMY) —y™Qly,y) xMQM, 1) —Q(I, 1)
(x—=y)ly—1) (x=T)(y—1)

» Mirrored m-Dyck paths: first peak decomposition

Q(X,U) — 1 i txmyQ(Xﬂlj)__]Q(X) ])

,xmQ,y) — Q1Y) x™Q(x,1)—Q(1,1)
B SR ¥ FYRN  CS  CYR

+ty

> No exact solution, but explicit asymptotic results = not algebraic,
not D-finite for m>1 (i.e. no linear diff. equation)



Intervals in the m-Dyck ascent lattice

* Asymptotics (from random walk results) [Denisov & Wachtel 15]
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Intervals in the m-Dyck ascent lattice

* Asymptotics (from random walk results) [Denisov & Wachtel 15]

gm(n) ~ KM“““»

where m
LL__m\/m2+4+mZ+2 (2+¢m2+4>
N 2 ' m

and

«x = —1 — 7t/ arccos(c) with C = \/

m?2 +2—+vm?2+4
2m? + 6 '
A deep result in the theory of Siegel's G-functions:

I the associated GF is D-finite, then a is
[Bostan, Raschel, Salvy 14-]

For m>), the exponent a is . and hence
the GF of intervals

Contrast with m-Tamari lattices, where intervals have an algebraic GF



IV. Connection with the
sylvester congruence

[Hivert, Novelli, Thibon 05]



Intervals of m-Dyck paths and mirrored m-Dyck paths

Two families of functional equations

> m-Dyck paths: last peak decomposition
Qlx,y) =1+ tx™Q(x,y)
2 X"QMY) —y™Qly,y) xMQM, 1) —Q(I, 1)
(x—=y)ly—1) (x=T)(y—1)

» Mirrored m-Dyck paths: first peak decomposition

Q(X,U) — 1 i txmyQ(X)z)__]Q(X) ])

,xmQ,y) — Q1Y) x™Q(x,1)—Q(1,1)
B SR ¥ FYRN  CS  CYR
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— produce numbers



In the OEIS...

Observation: for m=], 2, ..., 5, the sequence gm(n) that counts
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Observation: for m=], 2, ..., 5, the sequence gm(n) that counts
intervals of mirrored m-Dyck paths appears in the OEIS.

* m=l: number of sylvester classes of I-multiparking functions

Search: seq:1,3,13,69,417,2759 id:243688
Displaying 1-1 of 1 result found. I

Sort: relevance | references | number | modified | created Format: long | short | data

A243688 Number of Sylvester classes of 1-multiparking functions of length n.
1, 3, 13, 69, 417, 2759

(list; graph; refs; listen; history; text; internal format)

OFFSET 1,2
COMMENTS See Novelli-Thibon (2014) for precise definition.
LINKS Table of n, a(n) for n=1..6.

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations, (m+l)-ary trees, and m-parking_ functions,
arXiv preprint arXiv:1403.5962, 2014. See Fig. 26.

KEYWORD nonn,more
AUTHOR N. J. A. Sloane, Jun 14 2014
STATUS approved
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Observation: for m=], 2, ..., 5, the sequence gm(n) that counts
intervals of mirrored m-Dyck paths appears in the OEIS.
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* m=l: number of sylvester classes of I-multiparking functions

* m=2: number of sylvester classes of 2-multiparking functions

and so on.
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The sylvester congruence

e Defined on words on the alphabet Z
* Generated by commutation relations:
ac---b=ca---b, a<b<ec.
 Class representatives: words avoiding subwords with a = b <,

called sylvester words.

Example:
533- 533
4 34 3, sylvester word

A general correspondance between sylvester words
and intervals of a larger poset.



The Nadeau-Tewari lattice NT1,

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

e every descent of v is a descent of u.
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The Nadeau-Tewari lattice NT1,

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

e every descent of v is a descent of u.
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The Nadeau-Tewari lattice NT1,

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

e every descent of v is a descent of u.
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The Nadeau-Tewari lattice NT1,

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

o U lies below v (U < vj)

. every descent of vis a descent of u.

N8 — s V=(R, Q6 6 6 65 5) 10 mmm————
A o0 S )
e u=(8,1,6,6,6,53,1) 5 i T
Yot —y— S _I

e 6 vt e
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The Nadeau-Tewari lattice NT1,

Def. Let u=(w, .., un) and v=(v), ..., vn) be two nonincreasing
sequences of integers. Then u = v for the NT order if

e U lies below v (Ui = vj)
. every descent of vis a descent of u.

Observation: the ascent lattice An is the interval in the lattice NT,
with min=(M,n-I...., 1) and max=(nn, .., N)

NZ8 — e V=(R, Q6 6 6 65 5) 10 mmm————

= R A S
\‘ o ‘\u\\' u:<8,7,6,6,6,5,3,]) 7 _:
N 6
AN 5 pechechecbeepens
LN 4 =
3 b=
O AN 2 o




From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.
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containing the letter |, sayw=32222511165.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.



From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing
word that is smaller than w, componentwise.



From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing
word that is smaller than w, componentwise.

e |MJrite w) and w2 verﬂcallg as follows:
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From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,
containing the letter |, sayw=32222511165.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing
word that is smaller than w, componentwise.

e Write w) and w2 vertically as follows: _
* Complete with n=6 horizontal steps to _h:_E
form two ES paths. SRS O SO S-S

r

f
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From sylvester words to Nadeau-Tewari intervals

Example. Fix n=6 and a sylvester word w on the alphabet {], 2, .., N1,

containing the letter |, sayw=3222251115.

Letw)=Ninc(w)=5532222111 be its nonincreasing reordering.

Let w2z =LRMin(w)=3222221111 be the largest nonincreasing

word that is smaller than w, componentwise.

e Write w) and w2 vertically as follows: : _—

i A
e Complete with n=6 horizontal steps to 6 il B
form two ES paths. § Geecdendeedrion SR

T O =
e The horizontal words u=10108 8 1 3 3 ---------------------- —:._
and v =10101010 9 4, of length n=6, form 2 ot g
an interval in the Nadeau-Tewari lattice. 1 it 2



From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this is a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the

letter 1, and

¢ intervals Lu,v] in the NT lattice of size n, such that u and v

have and the

Example
Forn=6andw=3222251115, we
have u=10108 8 73 and v=10101010 9 4.

Conversely?

0 trorheifoh g
g i B
i FI A N
6 i R
S bbbl £
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6 5 4 3 2 1 0



From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this is a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the
letter 1, and

¢ intervals Lu,v] in the NT lattice of size n, such that u and v
have and the

Specializations: bijections between
» positive sylvester words w of length mn such that

Ninc(w) = n™ (n-)™ ... 2™ 1" and ascent intervals of m-Dyck paths
of length mn

+ positive sylvester words w of length n such that
Ninc(w) = ((N-Dm+)) ... (2m+)) (m+)) 1 and ascent intervals of
mirrored m-Dyck paths of length mn.



From sylvester words to Nadeau-Tewari intervals

Proposition. For any n, this is a bijection between:

¢ sylvester words w on the alphabet {1, 2, .., n} containing the
letter 1, and

¢ intervals Lu,v] in the NT lattice of size n, such that u and v
have and the

Specializations: bijections between
» positive sylvester words w of length mn such that

Ninc(w) = n™ (n-)™ ... 2™ 1" and ascent intervals of m-Dyck paths
of length mn

+ positive sylvester words w of length n such that
Ninc(w) = ((N-Dm+)) ... (2m+)) (m+)) 1 and ascent intervals of

mirrored m-Dyck paths of length mn. %
Sylvester classes of m-multiparking functions [Novelli, Thibo i
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Final questions

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

Example. a(P)=], r(P,Q)=2
(Non-recursive) ?




Final questions

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q

* D-algebraicity for m-Dyck paths, m>17



Final questions

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q
* D-algebraicity for m-Dyck paths, m>17

* Chains of length 3 in the ascent lattice? of length d¥



Final questions

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q
* D-algebraicity for m-Dyck paths, m>17

* Chains of length 3 in the ascent lattice? of length d¥

 Study mirrored m-Dyck paths in other Dyck lattices: intervals?



Final questions

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q
* D-algebraicity for m-Dyck paths, m>17

* Chains of length 3 in the ascent lattice? of length d¥

* Study mirrored m-Dyck paths in other Dyck lattices: intervals?

* Poset properties? (shellability, geometric realizations...)



Final questions

e Combinatorial proof for the number/GF of ascent intervals? (m-=1)

Mm+4)(2n+7)gmn+2)=2(1Tn* +44n+42)gn+1)+n(2n+1) g(n)

* A symmetric joint distribution on ascent intervals [P,Q] (m=]):

a(P) = length of the first ascent of P

r(P,Q) = number of ascents of P before the first descent of Q
e D-algebraictty for m-Dyck paths, m>1? Thanks for

* Chains of length 3 in the ascent lattice? of length yOUr

e Study mirrored m-Dyck paths in other Dyck lattices: nme;. “nfloh

* Poset properties? (shellability, geometric realizations...)



