Character bounds, card shuffling and random maps with S. Olesker-Taylor (Warwick) and L. Teyssier (UBC)

Paul Thévenin

CORTIPOM closing conference

June 10th, 2025

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random

June 10th, 2025 1 / 35

Shuffling algorithm

1) Start with a deck of *n* ordered cards.

2) At each step, choose two cards uniformly at random.

3) Swap their positions.

Shuffling algorithm

1) Start with a deck of *n* ordered cards.

2) At each step, choose two cards uniformly at random.

3) Swap their positions.

• How many steps before the deck can be considered mixed?

Shuffling algorithm

1) Start with a deck of *n* ordered cards.

2) At each step, choose two cards uniformly at random.

3) Swap their positions.

• How many steps before the deck can be considered mixed?

• What does it mean to be mixed?

Deck of cards and permutations

- Card = integer in $\llbracket 1, n \rrbracket$;
- Ordering of the deck = permutation of \mathfrak{S}_n ;
- Swap two cards randomly = compose by a uniformly random transposition.

글 제 제 글 제

Deck of cards and permutations

- Card = integer in $\llbracket 1, n \rrbracket$;
- Ordering of the deck = permutation of \mathfrak{S}_n ;
- Swap two cards randomly = compose by a uniformly random transposition.

We consider a random process $(X_k)_{k\geq 0}$ with values in \mathfrak{S}_n , such that:

•
$$X_0 = Id$$
 (i.e. $X_0(i) = i$ for all $i \in \llbracket 1, n \rrbracket$)

• $X_{k+1} = (i, j) \circ X_k$, where i, j are integers chosen uniformly at random.

Deck of cards and permutations

- Card = integer in $\llbracket 1, n \rrbracket$;
- Ordering of the deck = permutation of \mathfrak{S}_n ;
- Swap two cards randomly = compose by a uniformly random transposition.

We consider a random process $(X_k)_{k\geq 0}$ with values in \mathfrak{S}_n , such that:

•
$$X_0 = Id$$
 (i.e. $X_0(i) = i$ for all $i \in [[1, n]]$)

- $X_{k+1} = (i, j) \circ X_k$, where i, j are integers chosen uniformly at random.
- Object of interest: $\pi_k^{(n)}$, distribution of X_k . Distribution of the product of k independent uniform transpositions.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

We want to measure how mixed the deck is after a given number of steps.

Definition Let μ, ν be two probability measures on \mathfrak{S}_n . The *total variation* distance between μ and ν is defined as $d_{TV}(\mu, \nu) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}_n} |\mu(\sigma) - \nu(\sigma)| \in [0, 1].$

Example

•
$$\mu = \delta_{Id_n}$$
: $\forall \sigma \in \mathfrak{S}_n, \mu(\sigma) = \mathbb{1}_{\sigma = Id_n}$
• $\nu = Unif_{\mathfrak{S}_n}$: $\forall \sigma \in \mathfrak{S}_n, \nu(\sigma) = \frac{1}{n!}$.

We have

$$d_{TV}(\mu,\nu) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}_n} |\mu(\sigma) - \nu(\sigma)|$$

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random June 10th, 2025 5/35

イロン イ理 とくほとう ほんし

Example

•
$$\mu = \delta_{Id_n}$$
: $\forall \sigma \in \mathfrak{S}_n, \mu(\sigma) = \mathbb{1}_{\sigma = Id_n}$.
• $\nu = Unif_{\mathfrak{S}_n}$: $\forall \sigma \in \mathfrak{S}_n, \nu(\sigma) = \frac{1}{n!}$.

We have

$$d_{TV}(\mu,\nu) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}_n} |\mu(\sigma) - \nu(\sigma)|$$

= $\frac{1}{2} \left[|1 - \frac{1}{n!}| + (n! - 1)|0 - \frac{1}{n!}| \right]$

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random

Example

•
$$\mu = \delta_{Id_n}$$
: $\forall \sigma \in \mathfrak{S}_n, \mu(\sigma) = \mathbb{1}_{\sigma = Id_n}$.
• $\nu = Unif_{\mathfrak{S}_n}$: $\forall \sigma \in \mathfrak{S}_n, \nu(\sigma) = \frac{1}{n!}$.

We have

$$d_{TV}(\mu,\nu) = \frac{1}{2} \sum_{\sigma \in \mathfrak{S}_n} |\mu(\sigma) - \nu(\sigma)|$$

= $\frac{1}{2} \left[|1 - \frac{1}{n!}| + (n! - 1)|0 - \frac{1}{n!}| \right]$
= $1 - \frac{1}{n!}.$

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random

Mixing time and cutoff phenomenon

Let
$$\pi_k^{(n)}$$
 be the distribution of X_k , and set $d_n(k) := d_{TV}\left(\pi_k^{(n)}, Unif_{\mathfrak{S}_n}\right)$.

Fix
$$\varepsilon > 0$$
.
• $d_n \left((1 - \varepsilon) \frac{1}{2} n \ln(n) \right) \rightarrow 1$.
• $d_n \left((1 + \varepsilon) \frac{1}{2} n \ln(n) \right) \rightarrow 0$.

→ ∃ →

э

Mixing time and cutoff phenomenon

Let
$$\pi_k^{(n)}$$
 be the distribution of X_k , and set $d_n(k) := d_{TV}\left(\pi_k^{(n)}, Unif_{\mathfrak{S}_n}\right)$.

Fix
$$\varepsilon > 0$$
.
• $d_n \left((1 - \varepsilon) \frac{1}{2} n \ln(n) \right) \rightarrow 1$.
• $d_n \left((1 + \varepsilon) \frac{1}{2} n \ln(n) \right) \rightarrow 0$.

- Proof : representation theory.
- Heuristic: for $k(n) \ll n \ln(n)$, $X_{k(n)}$ has too many fixed points.

(本間) (本語) (本語) (二語

Cutoff

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random June 10th, 2025 7/35

(日) (同) (日) (日)

æ

Profile

The phase transition occurs at a smaller time scale

Theorem [Teyssier '20]
There exists
$$f : \mathbb{R} \mapsto [0, 1]$$
 decreasing from 1 to 0 such that, for all $c \in \mathbb{R}$:
 $d_n \left(\frac{1}{2}n\ln(n) + cn\right) \xrightarrow[n \to \infty]{} f(c).$

•
$$f(c) = d_{TV} \left(Po(1 + e^{-2c}), Po(1) \right).$$

< □ > < □ > < □ > < □ > < □ > < □ >

э

Extensions

Instead of multiplying transpositions, multiply other permutations ?

	Definition	
The conjugacy class of \mathfrak{S}_n the set of permutations of of length a_1 , k_2 cycles of le	denoted $[a_1^{k_1}, \mathfrak{S}_n]$ with this ngth a_2 , etc.	$a_2^{k_2} \dots] (a_1 \ge a_2 \ge \dots)$ is cyclic structure : k_1 cycles

Extensions

Instead of multiplying transpositions, multiply other permutations ?

Definition

The conjugacy class of \mathfrak{S}_n denoted $[a_1^{k_1}, a_2^{k_2} \dots]$ $(a_1 \ge a_2 \ge \dots)$ is the set of permutations of \mathfrak{S}_n with this cyclic structure : k_1 cycles of length a_1 , k_2 cycles of length a_2 , etc.

- $[2,1^{n-2}]$: transpositions
- [*n*]: *n*-cycles
- $[2^{n/2}]$ (*n* even) : product of n/2 transpositions.

Extensions

Instead of multiplying transpositions, multiply other permutations ?

Definition

The conjugacy class of \mathfrak{S}_n denoted $[a_1^{k_1}, a_2^{k_2} \dots]$ $(a_1 \ge a_2 \ge \dots)$ is the set of permutations of \mathfrak{S}_n with this cyclic structure : k_1 cycles of length a_1 , k_2 cycles of length a_2 , etc.

- $[2,1^{n-2}]$: transpositions
- [*n*]: *n*-cycles
- $[2^{n/2}]$ (*n* even) : product of n/2 transpositions.

We are interested in the law $\pi_k^{(n)}$ of the product of uniform elements of C_n , where C_n is a conjugacy class of \mathfrak{S}_n . Mixing time? Cutoff? Profile?

(Non-extensive) bibliography

• Transpositions

- Cutoff [Diaconis-Shahshahani '81]
- Phase transition [Berestycki-Durrett '06]
- Probability of having long cycles [Alon-Kozma '13]
- Profile [Teyssier '20], [Jain-Shawney '24]

Other conjugacy classes

- Some fixed-point-free conjugacy classes [Lulov '96]
- Mixing time for fixed-point-free conjugacy classes [Larsen-Shalev '08]
- Cutoff for k-cycles, k finite [Berestycki-Schramm-Zeitouni '11]
- Cutoff for k-cycles, k = o(n) [Hough '16]
- Cutoff for conjugacy classes, support = o(n) [Berestycky-Şengül '19]
- Profile, support = o(n) [Nestoridi, Olesker-Taylor '21].

Conjugacy classes with many fixed points

Let C_n be a conjugacy class of \mathfrak{S}_n . Denote by:

• f_n the number of fixed points of an element of C_n ;

•
$$t_n := \frac{\ln(n)}{\ln(n/f_n)}$$
;
• $d_n(k) = d_{TV} \left(\pi_k^{(n)}, Unif_{\mathfrak{S}_n} \right)$.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Conjugacy classes with many fixed points

Let C_n be a conjugacy class of \mathfrak{S}_n . Denote by:

• f_n the number of fixed points of an element of C_n ;

•
$$t_n := \frac{\ln(n)}{\ln(n/f_n)}$$
;
• $d_n(k) = d_{TV} \left(\pi_k^{(n)}, Unif_{\mathfrak{S}_n} \right)$.

. / \

points, we have:

マート・イラト・イラト きょうき き 今へで Paul Thévenin (CORTIPOM closing conferen Character bounds, card shuffling and random June 10th, 2025 11/35

 $d_n((1-\varepsilon)t_n) \to 1 \text{ and } d_n((1+\varepsilon)t_n) \to 0.$

Theorem [Olesker-Taylor, Teyssier, T. '25]

fixed

Fix $\varepsilon > 0$. Uniformly for any class C_n with at least $\frac{n}{(\ln(n))^{1/4}}$

Conjugacy classes with many fixed points

Let C_n be a conjugacy class of \mathfrak{S}_n . Denote by:

• f_n the number of fixed points of an element of C_n ;

•
$$t_n := \frac{\ln(n)}{\ln(n/f_n)}$$
;
• $d_n(k) = d_{TV} \left(\pi_k^{(n)}, Unif_{\mathfrak{S}_n} \right)$.

. / \

Theorem [Olesker-Taylor, Teyssier, T. '25] Fix $\varepsilon > 0$. Uniformly for any class C_n with at least $\frac{n}{(\ln(n))^{1/4}}$ fixed points, we have:

$$d_n((1-\varepsilon)t_n) \to 1 \text{ and } d_n((1+\varepsilon)t_n) \to 0.$$

• For C_n the class of transpositions, we recover $f_n = n - 2$, $t_n \sim \frac{1}{2}n \ln(n)$. Paul Thévenin (CORTIPOM closing conference Character bounds, card shuffling and random June 10th, 2025 11/35

A profile result

Theorem [Olesker-Taylor, Teyssier, T. '25]

Fix $\varepsilon > 0$. For any fixed $c \in \mathbb{R}$, uniformly for any class C_n with at least $\frac{n}{(\ln(n))^{1/4}}$ fixed points, we have:

$$d_n\left(t_n\left(1+\frac{c}{\ln(n)}\right)\right) \to f(c).$$

• Same profile as in the case of transpositions.

Permutations without fixed points

Consider now conjugacy classes without fixed points.

- [n]: uniformly random cycles of length n;
- $[2^{n/2}]$: product of n/2 transpositions.

After how many steps are we close to uniform?

Permutations without fixed points

Consider now conjugacy classes without fixed points.

[n]: uniformly random cycles of length n;
 [2^{n/2}]: product of n/2 transpositions.

After how many steps are we close to uniform?

In particular, are we uniform after 2 steps?

The *n*-cycles

Take two uniform *n*-cycles σ_1, σ_2 . Is the product $\sigma_1 \circ \sigma_2$ almost uniform ?

```
(123456789) \cdot (125489367) = (137268)(49)(5)
```

Heuristically: number of fixed points?

The *n*-cycles

Take two uniform *n*-cycles σ_1, σ_2 . Is the product $\sigma_1 \circ \sigma_2$ almost uniform ?

```
(123456789) \cdot (125489367) = (137268)(49)(5)
```

Heuristically: number of fixed points?

For all *i*, $\mathbb{P}(\sigma_1 \circ \sigma_2(i) = i) = \frac{1}{n}$, and the coordinates are essentially independent.

The *n*-cycles

Take two uniform *n*-cycles σ_1, σ_2 . Is the product $\sigma_1 \circ \sigma_2$ almost uniform ?

```
(123456789) \cdot (125489367) = (137268)(49)(5)
```

Heuristically: number of fixed points?

For all *i*, $\mathbb{P}(\sigma_1 \circ \sigma_2(i) = i) = \frac{1}{n}$, and the coordinates are essentially independent.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Product of n/2 transpositions

Take τ_1, τ_2 two uniform products of n/2 transpositions. Is $\tau_1 \circ \tau_2$ almost uniform?

 $(12)(34)(56)(78) \cdot (18)(23)(47)(56) = (173)(248)(5)(6).$

Product of n/2 transpositions

Take τ_1, τ_2 two uniform products of n/2 transpositions. Is $\tau_1 \circ \tau_2$ almost uniform?

$$(12)(34)(56)(78) \cdot (18)(23)(47)(56) = (173)(248)(5)(6).$$

For all i, $\mathbb{P}(\tau_1 \circ \tau_2(i) = i) = \frac{1}{n}$. But whenever we create a fixed point, we create a second one at the same time.

Product of n/2 transpositions

Take τ_1, τ_2 two uniform products of n/2 transpositions. Is $\tau_1 \circ \tau_2$ almost uniform?

$$(12)(34)(56)(78) \cdot (18)(23)(47)(56) = (173)(248)(5)(6).$$

For all i, $\mathbb{P}(\tau_1 \circ \tau_2(i) = i) = \frac{1}{n}$. But whenever we create a fixed point, we create a second one at the same time.

NO!

Mixing time

Theorem [Larsen & Shalev '08]

Fixed-point-free conjugacy classes mix in either 2 or 3 steps.

- 2 for *n*-cycles ;
- 3 for products of n/2 transpositions.

E 6 4 E 6

Our results

Theorem [Teyssier & T. '24]

For all $n \ge 1$, let C_n be a conjugacy class of \mathfrak{S}_n without fixed point. Then, the mixing time for $(C_n)_{n\ge 1}$ is 2 if and only if the number of transpositions in C_n is o(n).

Our results

Theorem [Teyssier & T. '24]

For all $n \ge 1$, let C_n be a conjugacy class of \mathfrak{S}_n without fixed point. Then, the mixing time for $(C_n)_{n\ge 1}$ is 2 if and only if the number of transpositions in C_n is o(n).

- Larger cycles play no role.
- Same idea: having too many transpositions creates too many fixed points.

4 AR N 4 E N 4 E N

Our results

Theorem [Teyssier & T. '24]

For all $n \ge 1$, let C_n be a conjugacy class of \mathfrak{S}_n without fixed point. Then, the mixing time for $(C_n)_{n\ge 1}$ is 2 if and only if the number of transpositions in C_n is o(n).

- Larger cycles play no role.
- Same idea: having too many transpositions creates too many fixed points.
- Proof: representation theory.

4 AR N 4 E N 4 E N

Elements of proof

Lemma [Diaconis & Shashahani '81]
Let
$$C$$
 be a conjugacy class of \mathfrak{S}_n . Then, for all $k \ge 1$:
 $4d_n(k)^2 \le \sum_{\lambda \in \widetilde{\mathfrak{S}}_n} \left(d_\lambda \left| \chi^{\lambda}(C) \right|^k \right)^2$.

- the λ denote the irreducible representations of \mathfrak{S}_n ;
- $\chi_{\lambda}(\mathcal{C})$ is the (renormalized) character of the representation λ at \mathcal{C} ;
- d_{λ} is the dimension of the representation.
Computing the dimension: the hook-length formula

There are combinatorial formulas to compute d_{λ} and $\chi^{\lambda}(\mathcal{C})$.

< ∃⇒

Computing the dimension: the hook-length formula

There are combinatorial formulas to compute d_{λ} and $\chi^{\lambda}(\mathcal{C})$.

Computing the dimension: the hook-length formula

There are combinatorial formulas to compute d_{λ} and $\chi^{\lambda}(\mathcal{C})$.

Young diagrams of size n: arrays with n boxes, where each row has less boxes than the one below.

Exemple : n = 5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = ...

Computing the dimension d_{λ}

Lemma

Let λ be an irreducible representation of \mathfrak{S}_n . Then we have:

 $d_{\lambda} = |ST_n(\lambda)|,$

where $|ST_n(\lambda)|$ is the number of standard Young tableaux of shape λ .

Computing the dimension d_{λ}

Lemma

Let λ be an irreducible representation of \mathfrak{S}_n . Then we have:

 $d_{\lambda} = |ST_n(\lambda)|,$

where $|ST_n(\lambda)|$ is the number of standard Young tableaux of shape λ .

Hooks

Let u be a box of the Young diagram λ . The hook $H(\lambda, u)$ is the set of boxes above or to the right of u (u included).

 $|H(\lambda, u)| = 5.$

Hook-length formula

Let λ be an irreducible representation of \mathfrak{S}_n . Then we have:

$$d_{\lambda} = |ST_n(\lambda)| = \frac{n!}{\prod_{u \in \lambda} |H(\lambda, u)|}$$

→ ∃ →

Hook-length formula

Let λ be an irreducible representation of \mathfrak{S}_n . Then we have:

$$d_{\lambda} = |ST_n(\lambda)| = \frac{n!}{\prod_{u \in \lambda} |H(\lambda, u)|}$$

< ∃⇒

Hook-length formula Let λ be an irreducible representation of \mathfrak{S}_n . Then we have: $d_{\lambda} = |ST_n(\lambda)| = \frac{n!}{\prod_{u \in \lambda} |H(\lambda, u)|}.$

A B < A B </p>

A B M A B M

Hook-length formula Let λ be an irreducible representation of \mathfrak{S}_n . Then we have: $d_{\lambda} = |ST_n(\lambda)| = \frac{n!}{\prod_{u \in \lambda} |H(\lambda, u)|}.$

2	1		
4	3	1	

3 × 4 3 ×

Hook-length formula Let λ be an irreducible representation of \mathfrak{S}_n . Then we have: $d_{\lambda} = |ST_n(\lambda)| = \frac{n!}{\prod_{u \in \lambda} |H(\lambda, u)|}.$

2	1	
4	3	1

$$d_{\lambda} = \frac{5!}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1} = 5.$$

A B M A B M

Character bounds

We now want to bound the characters $|\chi_{\lambda}(\mathcal{C})|$.

For all λ, C , we have $d_{\lambda} | \chi^{\lambda}(C) | \leq D(\lambda)^{E(C)},$ where E(C) is easy to compute, and $D(\lambda)$ is the virtual degree of λ .

4 1 1 4 1 1 1

Virtual degree

1					
2	1	1			
3	1	2	1		
1	5	4	3	2	1

(日)

$$d_{\lambda} = \frac{n!}{\prod |H(u,\lambda)|}$$

 $D(\lambda) = \frac{(n-1)!}{\prod a_i! \prod b_i!}$

2

24 / 35

Virtual degree

1					
2	1	1			
3	1	2	1		
1	5	4	3	2	1

$$d_{\lambda} = \frac{n!}{\prod |H(u,\lambda)|} = \frac{14!}{9*7*6*4*\ldots*1} \qquad D(\lambda) = \frac{(n-1)!}{\prod a_i! \prod b_i!}$$

イロト イヨト イヨト

Virtual degree

Bounding the virtual degree

Theorem [Larsen & Shalev '08] As $n \to \infty$, uniformly for all λ of size n, we have $D(\lambda) = d_{\lambda}^{1+o(1)}$.

→ ∃ →

Bounding the virtual degree

Theorem [Larsen & Shalev '08] As $n \to \infty$, uniformly for all λ of size n, we have $D(\lambda) = d_{\lambda}^{1+o(1)}$.

Theorem [Teyssier & T. '24]
As
$$n \to \infty$$
, uniformly for all λ of size n , we have
 $D(\lambda) = d_{\lambda}^{1+O(\frac{1}{\ln n})}$.

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random June 10th, 2025

This $O\left(\frac{1}{\ln n}\right)$ is sharp. Example: diagrams with 2 boxes above the first row, $\lambda = [n-2,2]$.

▲ 興 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

This $O\left(\frac{1}{\ln n}\right)$ is sharp. Example: diagrams with 2 boxes above the first row, $\lambda = [n-2,2]$.

くぼう くほう くほう しほ

This $O\left(\frac{1}{\ln n}\right)$ is sharp. Example: diagrams with 2 boxes above the first row, $\lambda = [n-2,2]$.

▲ 興 ▶ ▲ 国 ▶ ▲ 国 ▶ ― 国

This $O\left(\frac{1}{\ln n}\right)$ is sharp. Example: diagrams with 2 boxes above the first row, $\lambda = [n-2,2]$.

so $D(\lambda) = d_{\lambda}^{1 + \frac{\ln(2)/2 + o(1)}{\ln n}}$.

★御★ ★注★ ★注★ 二注

Idea of the proof

Define a third notion of dimension: the *augmented dimension* d_{λ}^{+} .

1					
2	1	1			
3	4	2	1		
9	5	4	3	2	1

$$d_{\lambda} = \frac{n!}{\prod |H(u,\lambda)|} \qquad \qquad d_{\lambda}^{+} = \frac{n!}{\prod s_i \prod a_i! \prod b_i!}$$

< 1 k

→

Idea of the proof

Define a third notion of dimension: the *augmented dimension* d_{λ}^+ .

Idea of the proof

Define a third notion of dimension: the *augmented dimension* d_{λ}^+ .

Lemmas

Done by induction on the size of the diagram.

The induction property

1					
2	1	1			
3	4	2	1		
9	5	4	3	2	1

 $d_{\lambda}^{+} = \binom{n}{|c|} d_{s}^{+} d_{c}^{+}.$

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random

イロト イボト イヨト イヨト

Conclusion

• Sharpens the bounds of Larsen-Shalev, improves on their character bounds.

< □ > < □ > < □ > < □ > < □ > < □ >

Conclusion

- Sharpens the bounds of Larsen-Shalev, improves on their character bounds.
- Hence, sharpens their mixing time results

< ∃⇒

Conclusion

- Sharpens the bounds of Larsen-Shalev, improves on their character bounds.
- Hence, sharpens their mixing time results

Theorem [Teyssier & T. '24]

For all $n \ge 1$, let C_n be a conjugacy class of \mathfrak{S}_n without fixed point. Then, the mixing time for $(C_n)_{n\ge 1}$ is 2 if and only if the number of transpositions in C_n is o(n).

Random maps and surfaces

How to build a random surface?

1) Start from k polygons of respective perimeters (p_1, \ldots, p_k) .

- 2) Label their sides from 1 to $N := \sum_{k} p_{k}$, uniformly at random.
- 3) Glue these N sides by pairs, uniformly at random.

Random maps and surfaces

How to build a random surface?

1) Start from k polygons of respective perimeters (p_1, \ldots, p_k) .

- 2) Label their sides from 1 to $N := \sum_{k} p_{k}$, uniformly at random.
- 3) Glue these N sides by pairs, uniformly at random.

Coded by two permutations :

α ∈ 𝔅_N, where α(i) = j if the side j 'follows' the side i around a polygon.

A 回下 A 三下 A 三下

Random maps and surfaces

How to build a random surface?

1) Start from k polygons of respective perimeters (p_1, \ldots, p_k) .

- 2) Label their sides from 1 to $N := \sum_{k} p_{k}$, uniformly at random.
- 3) Glue these N sides by pairs, uniformly at random.

Coded by two permutations :

- α ∈ 𝔅_N, where α(i) = j if the side j 'follows' the side i around a polygon.
- $\beta \in \mathfrak{S}_N$, where $\beta(i) = j$ if the sides *i* and *j* are glued. β is a fixed-point-free involution (product of N/2 transpositions).

ヘロト 人間ト ヘヨト ヘヨト

Permutation α

 $\alpha = (1234)(5678)$

A D N A B N A B N A B N

э

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random June 10th, 2025 32/35

Permutation β

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random

< □ > < □ > < □ > < □ > < □ > < □ >

Our results

Let \mathcal{P}_N be a sequence of k(N) polygons with N sides in total, where

- each polygon has at least 2 sides ;
- the number of digons is o(N).
Our results

Let \mathcal{P}_N be a sequence of k(N) polygons with N sides in total, where

- each polygon has at least 2 sides ;
- the number of digons is o(N).

Let M_N be the random map (graph embedded on a surface) obtained by taking α , β uniform in their conjugacy class.

Our results

Let \mathcal{P}_N be a sequence of k(N) polygons with N sides in total, where

- each polygon has at least 2 sides ;
- the number of digons is o(N).

Let M_N be the random map (graph embedded on a surface) obtained by taking α , β uniform in their conjugacy class.

Theorem [Teyssier & T. '24]

Let V_N be the number of vertices in M_N . Then, V_N is asymptotically distributed as C_N , the number of cycles of a uniform permutation of \mathfrak{A}_N (or $\mathfrak{S}_n \setminus \mathfrak{A}_n$).

Our results

Let \mathcal{P}_N be a sequence of k(N) polygons with N sides in total, where

- each polygon has at least 2 sides ;
- the number of digons is o(N).

Let M_N be the random map (graph embedded on a surface) obtained by taking α , β uniform in their conjugacy class.

Theorem [Teyssier & T. '24]

Let V_N be the number of vertices in M_N . Then, V_N is asymptotically distributed as C_N , the number of cycles of a uniform permutation of \mathfrak{A}_N (or $\mathfrak{S}_n \setminus \mathfrak{A}_n$).

• Completes results of [Gamburd '06], [Chmutov & Pittel '16], [Budzinski, Curien & Petri '19].

Paul Thévenin (CORTIPOM closing conferenCharacter bounds, card shuffling and random

Proof

- α , β are fixed-point-free, et α has o(N) transpositions.
- Our previous results can be adapted: the product γ := α β is asymptotically uniform.
- A cycle of γ corresponds to a vertex of M_n .

Thanks!

<ロト <問ト < 目と < 目と

36 / 35

æ