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What is the Tangent Method?

▶ The Tangent Method is an exact, albeit heuristic recipe to derive the
explicit analytic expression of arctic curves in models that can be
formulated in terms of directed lattice paths.
NB: we are NOT restricting to NILP; osculating paths OK.

▶ This is a fairly general condition, since arctic curves and limit shapes
usually follow from some discrete height function, whose level curves,
under some weak monotonicity condition, may be viewed as a set of
directed lattice paths on the underlying lattice.

▶ Originally devised in the context of the six-vertex model, the method
has been then successfully applied to many different situations where
a lattice path description is available.

▶ The six-vertex model being a rather complicate model, we shall here
present the method on a simplified version of it (although still
non-determinantal, and far from trivial), namely Alternating Sign
Matrices.



Alternating Sign Matrices (ASMs)

An ASM [Mills-Robbins-Rumsey’83] is a square matrix of 0, 1, -1, such that:

▶ in each row and column entries alternate in sign;

▶ for any given row or column, entries sum up to 1.

A 5× 5 ASM :


0 0 0 1 0
1 0 0 0 0
0 0 1 −1 1
0 0 0 1 0
0 1 0 0 0


NB: only a single nonzero entry in the first (last) row (column).

e.g, N = 3 :

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0


0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 1 0
1 −1 1
0 1 0

 0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0



▶ Enumeration: AN := # ASMs of size N (partition function)

▶ Refined enumeration: AN,r := # ASMs of size N with their sole non-zero
entry in the first row at position r (refined partition function)

▶ boundary correlation function: HN,r := AN,r/AN ,

and its generating function: hN(z) :=
N∑
r=1

HN,rz
r−1, hN(1) = 1.
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Alternating Sign Matrices (ASMs)

e.g, A3 = 7 :

1 0 0
0 1 0
0 0 1

1 0 0
0 0 1
0 1 0


0 1 0
1 0 0
0 0 1

0 1 0
0 0 1
1 0 0

0 1 0
1 −1 1
0 1 0

 0 0 1
1 0 0
0 1 0

0 0 1
0 1 0
1 0 0


A3,1 = 2, A3,2 = 3, A3,3 = 2, h3(z) =

2

7
+

3

7
z +

2

7
z2

▶ AN =
N∏
j=1

(3j − 2)!

(2N − j)!
[Zeilberger’94] [Kuperberg’96]

▶ AN,r =

(
N + r − 2

N − 1

)(
2N − 1− r

N − 1

)(
3N − 2

N − 1

)−1

AN [Zeilberger’96]

▶ hN(z) =
(N)N−1

(2N)N−1
2F1

(−N + 1, N

−2N + 2

∣∣∣∣z)
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ASMs as osculating lattice path
Robbins-Rumsey’86][Kuperberg’96]

0 0 0 0 1 -1


0 0 0 1 0
1 0 0 0 0
0 0 1 −1 1
0 0 0 1 0
0 1 0 0 0



-1

1

0

A 10× 10 ASM

Here and below, numerics produced with improved version of a C code, kindly provided by Ben
Wieland, based on the ‘Coupling From The Past’ [Propp-Wilson’96]
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A 100× 100 ASM



A 500× 500 black ASM



A 500× 500 ASM refined at position 350



A 500× 500 ASM refined at position 400



A 500× 500 ASM refined at position 450



The Tangent Method: the idea

Consider an N × N ASM refined at position r . Assume that:

1. In the scaling limit, the arctic curve of the first N − 1 paths is exactly the
same as that of an unrefined ASM.

2. When the Nth path first reach a location at a distance O(N
1
2 ) from the

(N − 1)th path, then its remaining portion, from there till the conditioned
location (N, r), is almost surely a random directed lattice path. As such, in
the scaling limit it turns into a straight line.

3. In the scaling limit the obtained straight line departs tangently from the
original limit shape.

Rescale i = ⌈(1− y)N⌉ and j = ⌈xN⌉ . Under above assumptions we expect:

The arc of Arctic curve subtended by a given
corner is the geometric caustic (or envelope) of
the family of straight lines generated by varying
the position of the refinement.

But how do you compute the slope?

1
2

1

y

x

( 1
2
, 0)
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1 r N

0

−s

N− 1





y

1

1

x0

−u

ξ

Recall, i = ⌈xN⌉, and j = ⌈(1− y)N⌉.

Let r = ⌈ξN⌉, with ξ ∈ (0, 1),

and s = ⌈uN⌉, with u ∈ (0,∞).

The line through (0,−u) and (ξ, 0) has
equation

y + u

x
=

y

x − ξ

i.e

x− ξ(u)

u
y−ξ(u) = 0, u ∈ (0,∞).



1 r N

0

−s

N− 1

AN ,r

Pr−1,s

ZN,s =
N∑
r=1

AN,rPr−1,s



1 r N

0

−s

N− 1

AN ,r

Pr−1,s

ZN,s =
N∑
r=1

AN,rPr−1,s



A digression on function hN(z)

Define:

r(z) := lim
N→∞

1

N
z
d

dz
log hN(z),

which will play a crucial role below.
Recall,

hN(z) :=
N∑
r=1

HN,rz
r−1,

with HN,r log-concave. Letting r = ⌈ξN⌉, with ξ ∈ (0, 1), at large N we
may write

hN(z) ∝
∫ 1

0
HN,⌈ξN⌉e

⌊ξN⌋ log zdξ.

Then, in the saddle-point approximation, we have simply

r(z) = ξsp,

with ξsp solution of the saddle-point eq.

1

N

d

dξ
logHN,⌈ξN⌉ + log z = 0.



Back to the extended domain

Let r = ⌈ξN⌉, ξ ∈ (0, 1), and s = ⌈uN⌉, u ∈ (0,∞). We are interested in
minimising the ‘free energy’

F (u) := − lim
N→∞

1

N
log

ZN,s

ZN,0

where
ZN,s

ZN,0
=

N∑
r=1

HN,rPr−1,s =
N∑
r=1

HN,r

(
r + s − 1

r − 1

)
,

Saddle-point approximation: introduce the ‘action’

1

N
logHN,ξN + ℓ(ξ + u)− ℓ(ξ)− ℓ(u), ℓ(x) := x log x

whose saddle-point equation reads

1

N

d

dξ
logHN,ξN + log(ξ + u)− log ξ = 0



Summing up

From the very definition r(z) := lim
N→∞

1

N
z
d

dz
log hN(z), it follows that:

r(z) = ξsp, with
1

N

d

dξ
logHN,⌈ξN⌉ + log z = 0.

Moreover, for any given u ∈ (1,∞), the SPE for the F (u),

1

N

d

dξ
logHN,ξN + log(ξ + u)− log ξ = 0

determines the value ξ(u) and hence where r = ⌈ξN⌉ concentrates. It
follows that:

z =
ξ(u) + u

ξ(u)
⇒ u

ξ(u)
= z − 1

Insert in the eq. for the family of lines, and get:

x − 1

z − 1
y − r(z) = 0, z ∈ (1,∞)



Some comments

x − 1

z − 1
y − r(z) = 0, z ∈ (1,∞)

▶ This eq. is quite general. Not only ASMs. For different lattices,
domain shapes, coordinates, minimal changes required. Directly
applicable to your favourite model of directed lattice path (with
uniform weights).

▶ Extension to non-uniform weights is fairly straightforward.

▶ All the information on the original model is inside r(z). Of course,
this need to be evaluated explicitely, which may be difficult.

▶ ‘Holographic principle”, this eq. allows you to calculate ‘bulk’
quantities (the limit shape) just from boundary knowledge, r(z).

▶ Arctic curve (parametric form):{
x − 1

z−1y − r(z) = 0

y − (z − 1)2r ′(z) = 0
⇒

{
x(z) = (z − 1)r ′(z) + r(z)

y(z) = (z − 1)2r ′(z) = 0
z ∈ (1,∞)

And for z ̸∈ (1,∞)?



Back to ASMs

We need to evaluate r(z) := lim
N→∞

1

N
z
d

dz
log hN(z),

where hN(z) =
(N)N−1

(2N)N−1
2F1

(−N + 1, N

−2N + 2

∣∣∣∣z) . [Zeilberger’96]

A simple saddle-point evaluation yields: rASM(z) =

√
z2 − z + 1− 1

z − 1

and{
x(z) = 2z−1

2
√
z2−z+1

y(z) = 1− z+1
2
√
z2−z+1

z ∈ (1,∞),

derived in [FC-Sportiello’16]

reproduces [FC-Pronko’09]

proven rigorously in [Aggarwal’19]
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{
x(z) = 2z−1

2
√
z2−z+1

y(z) = 1− z+1
2
√
z2−z+1

z ∈ (1,∞)

Picture by Ben Wieland, https://nokedli.net/asm-frozen/

∆ = 1
2

∆ = 0



Six-vertex model (with Domain Wall BC)
[Lieb’67][Sutherland’67] [Korepin’82]

0 0 0 0 1 -1

a a b b c c


0 0 0 1 0
1 0 0 0 0
0 0 1 −1 1
0 0 0 1 0
0 1 0 0 0


Weighted, and refined weighted enumerations may be defined just as for
ASMs, but they now depend on a, b, c .

AN → ZN(a, b, c) :=
∑
conf

anabnbcnc

Formulae become quite bulky, e.g., P(r ,s) =
(
b
a

)r+s∑
l≤0

(r
l

)(s
l

) (
c
a

)2l+1

and the family of lines reads:

x − zc2

(z − 1)(b2z − 2ab + a2)
y − r(z) = 0, z ∈ (0,∞)

Calculation of r(z) requires some work too [FC-Pronko’09].
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Arctic curves (a = b = 1, c = sin 2η)

x = F
(π
2
− η − ζ

)
y = F (ζ)

ζ ∈ [0,
π

2
− η]

where

F (ζ) =
sin2ζ sin2(ζ + 2η) cos(ζ − η) cos(ζ + η)

sin 2η cos η
[
cos(ζ − η) sin ζ + cos(ζ + η) sin(ζ + 2η)

]
×
{

cos2η

sin2ζ cos(ζ + η) cos(ζ − η)

− sin 2ζ

cos(ζ − η) cos(ζ + η)

α sinα(π2 − η)

sinαζ sinα(ζ + π
2 − η)

− α2 sinα(2ζ + π
2 − η) sinα(π2 − η)

sin2αζ sin2α(ζ + π
2 − η)

}
.

NB: α = π

π−arccos
(
1− c2

2

) , η = 1
2 arccos

(
1− c2

2

)



Arctic curves (a = b = 1, ∆ := 1− c2

2 )

D=-1
D=-1�2

D=0
D=1�2

D=1

D=-1
D=-4

D=-10

D=-100

D=-1000

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5



Other domain shapes?

Apply the Tangent Method!



Other domain shapes?

Apply the Tangent Method!



Domino Tiling of AD with a cut-off corner (c =
√
2)

[FC-Pronko-Sportiello’18]



NILP? Easy!
Exercise:

N

K

L−N

N − 1r

K − 1

L−N

Apply [Linstrom’73][Gessel-Viennot’85] to express both partition functions
as determinants of matrice binomials. Then use Advanced Determinant
Calculus, Thm. 26 [Krattenthaler’99], to express the ratio as product of
factorials. Use Stirling to evaluate asymptotics and obtain the arctic curve.

NB: extend the domain upward, and modify coordinates accordingly!
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Other models?
▶ Domino tilings of Aztec Diamond [Jockusch-Propp-Shor’98] [FC-AS’16]

▶ Boxed plane partitions [Cohn-Larsen-Propp’98] [FC-AS’16]

▶ ASM’s on a triangoloid domain [FC-AS’16][Aggarwal’19]

▶ Twenty-vertex model [Debin-Di Francesco-Guitter’20]

▶ Twenty-vertex model on a triangle [Di Francesco’23]

▶ Aztec rectangles with defects [Di Francesco-Guitter’19]

▶ Double Aztec rectangles [de Kemmeter-Debin-Ruelle’22]

▶ Two-periodic Aztec Diamond [Chhita-Johansson’16][Duits-Kuijlaars’21] [Ruelle’22]

▶ Dimer models with defects and freezing boundary [Debin-Ruelle’19]

▶ Improvements of the method (tangency) [Debin-Granet-Ruelle’19]

▶ Multirefinements [Debin-Ruelle’21]

▶ q-weighted paths [Di Francesco-Guitter’19]

▶ Octahedron equation [Di Francesco-Soto-Garrido’19]

▶ Bounded Lecture Hall Tableaux [Corteel-Keating-Nicoletti’20] ...



INTERMISSION
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Interface fluctuations



Square Emptiness Formation Probability (SEFP)
Let AN be the set of all ASMs of size N.

Let BN,s := {m ∈ AN ,mi ,j = 0 ∀i , j ≤ s}

An example of matrix in B7,3:



0 0 0 0 1 0 0
0 0 0 1 −1 1 0
0 0 0 0 1 0 0
1 0 0 0 −1 0 1
0 0 1 0 0 0 0
0 1 −1 0 1 0 0
0 0 1 0 0 0 0


For given N, s, sample M uniformely from AN . We call SEFP, and denote
by FN,s the probability to get M ∈ BN,s . Clearly,

FN,s :=
|BN,s |
|AN |

▶ discriminates the transition between top-left empty (or frozen) region
and central non-empty (disordered) region

▶ in the scaling limit: stepwise behaviour in correspondence of the
Arctic curve

▶ with some smoothing at some scale Nα, 0 < α < 1, to be determined
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Multiple Integral Representation for FN,s

NB: this is a theorem! [FC-Pronko’08]

The following representation holds

FN,s =

∮
C∞

· · ·
∮
C∞

J
(s)
N (z1, . . . , zs)d

sz

where

J
(s)
N (z1, . . . , zs) =

1

(2iπ)s

s∏
j=1

1

z jj (zj − 1)s−j+1

∏
1≤j<k≤s

zj − zk
zjzk − zk + 1

hN,s(z1, . . . , zs)

with

hN,s(z1, . . . , zs) :=
1

∆s(z1, . . . , zs)
det
[
(zj − 1)k z s−k

j hN−s+k(zj)
]s
j,k=1and

hN(z) =
(N)N−1

(2N)N−1
2F1

(−N + 1, N

−2N + 2

∣∣∣∣z) .

|A5| = A5 = 429

|B5,2| = 96

F5,2 =
32

143

|A14| = A14 = 9995541355448167482000 ≃ 1022

|B14,5| = 11845913993207115172 ≃ 1019

F14,5 =
3870965779057

3266307568354500
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Determinant Representation for FN,s

NB: this is a conjecture! [FC-Pronko’24]

The following representation holds

FN,s = det
s
(I − A)

where the s × s matrix A = A(N, s) reads

Aij =

∮
C0

∮
C0

eLi (z)e
U
j (w)

1− z − w

dzdw

(2πi)2
, i , j = 1, . . . , s, (∗)

with

eLi (z) :=
(1− z)i−1

z i
(
1 + (−1)iz

)
hN−s+i (z),

eUj (w) :=
(1− w)j−1

hr+j(0)w j

(
1 + (−1)j+1w

)
hN−s+j(w).

Built analitically from previous MIR for s = 1, 2, 3, 4 and conjectured to
hold for all integer s.



Check

Check the s = 5 case: evaluate with Mathematica both our conjectural
expression and the MIR, for N = 7, . . . , 13:

N Determinant MIR
7 0 0

8 0 0

9 0 0

10 61347
43178090900

61347
43178090900

11 49711519
1636618150125

49711519
1636618150125

12 54886057499
221251085257500

54886057499
221251085257500

13 3870965779057
3266307568354500

3870965779057
3266307568354500



Fredholm determinant representation

[FC-Pronko’24]The following representation holds

FN,s = det(1− K̂[0,∞))

where K̂[0,∞) is a linear integral operator acting on functions defined on
R+ according to the rule

(K̂[0,∞)f )(t1) =

∫ ∞

0
K (t1, t2)f (t2)dt2

with kernel

K (t1, t2) =

∮
C0

∮
C0

e(z−
1
2)t1+(w− 1

2)t2
s∑

j=1

eLj (z)e
U
j (w)

dzdw

(2πi)2
.

Remark
The kernel K (t1, t2) is not ‘of integrable form’

(in the sense of [Its-Izergin-Korepin-Slavnov’92])



Scaling limit
Define

F (σ) := lim
N→∞

(
det
s
(1− A)

∣∣∣
s=N

(
1−

√
3

2

)
− N1/3

24/331/6
σ

)
where the s × s matrix A is given by (∗).
Let K̂Ai

[σ,∞)the linear integral operator acting on space L2(σ,∞) with kernel

KAi(t1, t2) =
Ai(t1)Ai

′(t2)−Ai′(t1)Ai(t2)

t1 − t2
(Airy kernel)

Theorem (FC-Pronko’24)

The following holds:

F (σ) = det
(
1− K̂Ai

[σ,∞)

)
=: F2(σ)
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Conclusions
Conjecture

For the Square Emptiness Formation probability for ASMs, the following
determinant representation holds:

FN,s = dets(1− A)

where A = A(N, s) is the s × s matrix given in (∗).

Theorem
Given the s × s matrix A = A(N, s), see (∗), the following holds:

lim
N→∞

(
dets(1− A)

∣∣∣
s=N

(
1−

√
3

2

)
− N1/3

24/331/6
σ

)
= F2(σ).

▶ First exact (although non rigorous) derivation of TW in a critical and
interacting (in the sense of non-determinantal) system.

▶ In full agreeement with numerical simulations [Korepin-Lyberg-Viti’23]

[Prauhofer-Spohn’24]

▶ In full agreement with the GOE behaviour derived for the fluctuations of
TSSCPP [Ayyer,Chhita,Johansson’23]


