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Prologue

24th International Conference on Formal Power Series and
Algebraic Combinatorics, Nagoya, Hotel Lobby, 2012

Christian to Christian: “Willst Du ein weiteres
,Zyklisches-Sieben-Phänomen‘ beweisen?”1

Christian to Christian: “Sicher. Warum nicht?”2

1“Do you want to prove another cyclic sieving phenomenon?”

2“Sure. Why not?”
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A brief history of non-crossing partitions

Kreweras (1972): “partitions non croisées d’un cycle”
A set partition is called non-crossing if its representation on the
circle is non-crossing.

Example:
{
{1, 3, 6, 7}, {2}, {4, 5}, {8, 9}

}
1

2

3

45

6

7

8

9

Theorem (Kreweras)

NCn =
1

n + 1

(
2n

n

)
=

1

n

(
2n

n − 1

)
.
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A brief history of non-crossing partitions

Kreweras (1972): “partitions non croisées d’un cycle”

Edelman (1980): ”m-divisible non-crossing partitions”
A non-crossing partition is called m-divisible if all block sizes are
divisible by m.

Theorem (Edelman)

The number of m-divisible non-crossing partitions of
{1, 2, . . . ,mn} is

1

n

(
(m + 1)n

n − 1

)
.

(These numbers are now known as the Fuß–Catalan numbers.)
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A brief history of non-crossing partitions

Kreweras (1972): “partitions non croisées d’un cycle”
Edelman (1980): ”m-divisible non-crossing partitions”

Biane (1997): non-crossing partitions as permutations
Define the reflection length `T (π) of a permutation π as the
smallest k such that π = t1t2 · · · tk , where all ti are transpositions.

Theorem (Biane)

The non-crossing partitions of {1, 2, . . . , n} arise by considering all
permutations π in Sn such that there exists σ ∈ Sn with

σ◦π = (1, 2, . . . , n) and `T (σ)+`T (π) = `T
(
(1, 2, . . . , n)

)
= n−1.

interpreting the cycles of π as blocks.

Example: {
{1, 3, 6, 7}, {4, 5}, {8, 9}

}
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A brief history of non-crossing partitions

Kreweras (1972): “partitions non croisées d’un cycle”
Edelman (1980): ”m-divisible non-crossing partitions”
Biane (1997): non-crossing partitions as permutations
Define the reflection length `T (π) of a permutation π as the
smallest k such that π = t1t2 · · · tk , where all ti are transpositions.

Theorem (Biane)

The non-crossing partitions of {1, 2, . . . , n} arise by considering all
permutations π in Sn such that there exists σ ∈ Sn with

σ◦π = (1, 2, . . . , n) and `T (σ)+`T (π) = `T
(
(1, 2, . . . , n)

)
= n−1.

interpreting the cycles of π as blocks.

Example:

(1, 3, 6, 7)(4, 5)(8, 9)
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A brief history of non-crossing partitions

Kreweras (1972): “partitions non croisées d’un cycle”
Edelman (1980): ”m-divisible non-crossing partitions”
Biane (1997): non-crossing partitions as permutations
Define the reflection length `T (π) of a permutation π as the
smallest k such that π = t1t2 · · · tk , where all ti are transpositions.

Theorem (Biane)

The non-crossing partitions of {1, 2, . . . , n} arise by considering all
permutations π in Sn such that there exists σ ∈ Sn with

σ◦π = (1, 2, . . . , n) and `T (σ)+`T (π) = `T
(
(1, 2, . . . , n)

)
= n−1.

interpreting the cycles of π as blocks.

Example: We have(
(1, 8)(2, 3)(4, 6)

)
◦
(

(1, 3, 6, 7)(4, 5)(8, 9)
)

= (1, 2, 3, 4, 5, 6, 7, 8, 9)

and 3 + 5 = 9− 1.
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A brief history of non-crossing partitions

Kreweras (1972): “partitions non croisées d’un cycle”
Edelman (1980): ”m-divisible non-crossing partitions”
Biane (1997): non-crossing partitions as permutations

Bessis; Brady and Watt (2002/03): non-crossing partitions
for reflection groups
For a finite real reflection group W and an element w ∈W , define
the reflection length `T (w) as the smallest k such that
w = t1t2 · · · tk , where all ti are reflections.

Definition

For a finite real reflection group W fix a Coxeter element c . The
non-crossing partitions for W are all elements w in W such that
there exists v ∈W with

v ◦ w = c and `T (v) + `T (w) = `T (c).
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Kreweras (1972): “partitions non croisées d’un cycle”
Edelman (1980): ”m-divisible non-crossing partitions”
Biane (1997): non-crossing partitions as permutations
Bessis; Brady and Watt (2002/03): non-crossing partitions
for reflection groups

Armstrong (2006): m-divisible non-crossing partitions for
reflection groups
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m-divisible non-crossing partitions associated with
reflection groups

Let W be a finite real reflection group.

The reflection length `T (w) of an element w ∈W is defined by
the smallest k such that

w = t1t2 · · · tk ,

where all ti are reflections.

The reflection order ≤T is defined by

u ≤T w if and only if `T (u) + `T (u−1w) = `T (w).
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m-divisible non-crossing partitions associated with
reflection groups

Definition (Armstrong)

The m-divisible non-crossing partitions for a reflection group W
are defined by

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

where c is a Coxeter element in W .

In particular,
NC (1)(W ) ∼= NC (W ),

the “ordinary” non-crossing partitions for W .
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m-divisible non-crossing partitions associated with
reflection groups

Definition (Armstrong)

The m-divisible non-crossing partitions for a reflection group W
are defined by

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

where c is a Coxeter element in W .

The elements of NC (m)(W ) are enumerated by the Fuß–Catalan
numbers for reflection groups

Cat(m)(W ) :=
n∏

i=1

mh + di
di

.

Here, d1 ≤ d2 ≤ · · · ≤ dn are the degrees of W , and h = dn is the
Coxeter number of W .
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Classification of (irreducible) finite real reflection groups

Type An: permutations of {1, 2, . . . , n + 1}; that is, Sn+1

Type Bn: permutations π of {1, 2, . . . , n,−1,−2, . . . ,−n} with
π(−i) = −π(i) for all i

Type Dn: subgroup of Bn of signed permutations with an even
number of signs

Exceptional types: E6,E7,E8, F4, H3,H4

Dihedral groups: I2(r)
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m-divisible non-crossing partitions associated with
reflection groups

Combinatorial realisation in type A (Armstrong)

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Indeed,

(4, 5, 6) (3, 6) (1, 7) (1, 2, 6) = (1, 2, 3, 4, 5, 6, 7) = c

and

`T
(
(4, 5, 6)

)
+ `T

(
(3, 6)

)
+ `T

(
(1, 7)

)
+ `T

(
(1, 2, 6)

)
= 2 + 1 + 1 + 2 = 6 = `T

(
(1, 2, 3, 4, 5, 6, 7)

)
.

Now “blow-up” w1,w2,w3:

(1, 2, . . . , 21) (7, 16)−1 (2, 20)−1 (3, 6, 18)−1

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).
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Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



m-divisible non-crossing partitions associated with
reflection groups

Combinatorial realisation in type A (Armstrong)

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Indeed,

(4, 5, 6) (3, 6) (1, 7) (1, 2, 6) = (1, 2, 3, 4, 5, 6, 7) = c

and

`T
(
(4, 5, 6)

)
+ `T

(
(3, 6)

)
+ `T

(
(1, 7)

)
+ `T

(
(1, 2, 6)

)
= 2 + 1 + 1 + 2 = 6 = `T

(
(1, 2, 3, 4, 5, 6, 7)

)
.

Now “blow-up” w1,w2,w3:

(1, 2, . . . , 21) (7, 16)−1

(2, 20)

−1

(3, 6, 18)

−1

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).
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Combinatorial realisation in type A (Armstrong)
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(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Indeed,

(4, 5, 6) (3, 6) (1, 7) (1, 2, 6) = (1, 2, 3, 4, 5, 6, 7) = c

and
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m-divisible non-crossing partitions associated with
reflection groups

Combinatorial realisation in type A (Armstrong)

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Indeed,

(4, 5, 6) (3, 6) (1, 7) (1, 2, 6) = (1, 2, 3, 4, 5, 6, 7) = c

and

`T
(
(4, 5, 6)

)
+ `T

(
(3, 6)

)
+ `T

(
(1, 7)

)
+ `T

(
(1, 2, 6)

)
= 2 + 1 + 1 + 2 = 6 = `T

(
(1, 2, 3, 4, 5, 6, 7)

)
.

Now “blow-up” w1,w2,w3:

(1, 2, . . . , 21)

(7, 16)−1 (2, 20)−1 (3, 6, 18)−1

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).
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m-divisible non-crossing partitions associated with
reflection groups

Combinatorial realisation in type A (Armstrong)

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Indeed,

(4, 5, 6) (3, 6) (1, 7) (1, 2, 6) = (1, 2, 3, 4, 5, 6, 7) = c

and

`T
(
(4, 5, 6)

)
+ `T

(
(3, 6)

)
+ `T

(
(1, 7)

)
+ `T

(
(1, 2, 6)

)
= 2 + 1 + 1 + 2 = 6 = `T

(
(1, 2, 3, 4, 5, 6, 7)

)
.

Now “blow-up” w1,w2,w3:

(1, 2, . . . , 21) (7, 16)−1 (2, 20)−1 (3, 6, 18)−1

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).
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m-divisible non-crossing partitions associated with
reflection groups

Combinatorial realisation in type A (Armstrong)

NC (m)(W ) =
{

(w0;w1, . . . ,wm) : w0w1 · · ·wm = c and

`T (w0) + `T (w1) + · · ·+ `T (wm) = `T (c)
}
,

Example for m = 3, W = A6(= S7):
w0 = (4, 5, 6), w1 = (3, 6), w2 = (1, 7), and w3 = (1, 2, 6). Indeed,

(4, 5, 6) (3, 6) (1, 7) (1, 2, 6) = (1, 2, 3, 4, 5, 6, 7) = c

and

`T
(
(4, 5, 6)

)
+ `T

(
(3, 6)

)
+ `T

(
(1, 7)

)
+ `T

(
(1, 2, 6)

)
= 2 + 1 + 1 + 2 = 6 = `T

(
(1, 2, 3, 4, 5, 6, 7)

)
.

Now “blow-up” w1,w2,w3:

(1, 2, . . . , 21) (7, 16)−1 (2, 20)−1 (3, 6, 18)−1

= (1, 2, 21) (3, 19, 20) (4, 5, 6) (7, 17, 18) (8, 9, . . . , 16).
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m-divisible non-crossing partitions associated with
reflection groups
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A 3-divisible non-crossing partition of type A6
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m-divisible non-crossing partitions associated with
reflection groups
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A 3-divisible non-crossing partition of type B5
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m-divisible non-crossing partitions associated with
reflection groups
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A 3-divisible non-crossing partition of type D6
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Positive m-divisible non-crossing partitions

We want positive m-divisible non-crossing partitions!

These were defined by Buan, Reiten and Thomas, as an aside in
“m-noncrossing partitions and m-clusters.” There, they
constructed a bijection between the facets of the m-cluster
complex of Fomin and Reading and the m-divisible non-crossing
partitions of Armstrong.

The positive m-clusters are those which do not contain any
negative roots. They are enumerated by the positive Fuß–Catalan
numbers

Cat
(m)
+ (W ) :=

n∏
i=1

mh + di − 2

di
.

Here, d1 ≤ d2 ≤ · · · ≤ dn are the degrees of W , and h = dn is the
Coxeter number of W .
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Positive m-divisible non-crossing partitions

We want positive m-divisible non-crossing partitions!

These were defined by Buan, Reiten and Thomas, as an aside in
“m-noncrossing partitions and m-clusters.” There, they
constructed a bijection between the facets of the m-cluster
complex of Fomin and Reading and the m-divisible non-crossing
partitions of Armstrong.

The positive m-clusters are those which do not contain any
negative roots. They are enumerated by the positive Fuß–Catalan
numbers

Cat
(m)
+ (W ) :=

n∏
i=1

mh + di − 2

di
.

Here, d1 ≤ d2 ≤ · · · ≤ dn are the degrees of W , and h = dn is the
Coxeter number of W .

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Positive m-divisible non-crossing partitions

We want positive m-divisible non-crossing partitions!

These were defined by Buan, Reiten and Thomas, as an aside in
“m-noncrossing partitions and m-clusters.” There, they
constructed a bijection between the facets of the m-cluster
complex of Fomin and Reading and the m-divisible non-crossing
partitions of Armstrong.

The positive m-clusters are those which do not contain any
negative roots. They are enumerated by the positive Fuß–Catalan
numbers

Cat
(m)
+ (W ) :=

n∏
i=1

mh + di − 2

di
.

Here, d1 ≤ d2 ≤ · · · ≤ dn are the degrees of W , and h = dn is the
Coxeter number of W .
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Positive m-divisible non-crossing partitions

So:

Buan, Reiten and Thomas declare:

Definition

The image of the positive m-clusters under the
Buan–Reiten–Thomas bijection constitutes the positive m-divisible
non-crossing partitions.

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition (w0;w1, . . . ,wm) in
NC (m)(W ) is positive, if and only if w0w1 · · ·wm−1 is not
contained in any proper standard parabolic subgroup of W .
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So:

Buan, Reiten and Thomas declare:

Definition

The image of the positive m-clusters under the
Buan–Reiten–Thomas bijection constitutes the positive m-divisible
non-crossing partitions.

One can give an intrinsic definition:

Definition
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Positive m-divisible non-crossing partitions

So:

Buan, Reiten and Thomas declare:

Definition

The image of the positive m-clusters under the
Buan–Reiten–Thomas bijection constitutes the positive m-divisible
non-crossing partitions.

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition (w0;w1, . . . ,wm) in
NC (m)(W ) is positive, if and only if w0w1 · · ·wm−1 is not
contained in any proper standard parabolic subgroup of W .
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Positive m-divisible non-crossing partitions

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition (w0;w1, . . . ,wm) in
NC (m)(W ) is positive, if and only if w0w1 · · ·wm−1 is not
contained in any proper standard parabolic subgroup of W .

Let NC
(m)
+ (W ) denote the set of all positive m-divisible

non-crossing partitions for W .
Trivial corollary:

|NC (m)
+ (W )| = Cat

(m)
+ (W ) =

n∏
i=1

mh + di − 2

di
.

Buan, Reiten and Thomas then write:

“Other than that, there do not seem to be enumerative results
known for these families.”

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Positive m-divisible non-crossing partitions

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition (w0;w1, . . . ,wm) in
NC (m)(W ) is positive, if and only if w0w1 · · ·wm−1 is not
contained in any proper standard parabolic subgroup of W .

Let NC
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+ (W ) denote the set of all positive m-divisible

non-crossing partitions for W .
Trivial corollary:

|NC (m)
+ (W )| = Cat
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+ (W ) =

n∏
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.

Buan, Reiten and Thomas then write:

“Other than that, there do not seem to be enumerative results
known for these families.”

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Positive m-divisible non-crossing partitions

One can give an intrinsic definition:

Definition

An m-divisible non-crossing partition (w0;w1, . . . ,wm) in
NC (m)(W ) is positive, if and only if w0w1 · · ·wm−1 is not
contained in any proper standard parabolic subgroup of W .

Let NC
(m)
+ (W ) denote the set of all positive m-divisible

non-crossing partitions for W .
Trivial corollary:

|NC (m)
+ (W )| = Cat

(m)
+ (W ) =

n∏
i=1

mh + di − 2

di
.

Buan, Reiten and Thomas then write:

“Other than that, there do not seem to be enumerative results
known for these families.”
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Enumeration of positive m-divisible non-crossing partitions

For “ordinary” m-divisible non-crossing partitions, closed-form
enumeration results are known for:

• total number;

• number of those of given rank;

• number of those with given block sizes (in types A, B, D);

• number of chains;

• number of chains with elements at given ranks;

• number of chains with elements at given ranks and bottom
element with given block sizes (in types A, B, D).
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Enumeration of positive m-divisible non-crossing partitions

For “ordinary” m-divisible non-crossing partitions, closed-form
enumeration results are known for:

• total number;

• number of those of given rank;

• number of those with given block sizes (in types A, B, D);

• number of chains;

• number of chains with elements at given ranks;

• number of chains with elements at given ranks and bottom
element with given block sizes (in types A, B, D).
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How do elements of NC
(m)
+ (An−1) look like?
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How do elements of NC
(m)
+ (An−1) look like?

Fact: Under Armstrong’s map, the elements of NC
(m)
+ (An−1)

correspond to those m-divisible non-crossing partitions of
{1, 2, . . . ,mn} in which mn and 1 are in the same block.
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How do elements of NC
(m)
+ (An−1) look like?

Fact: Under Armstrong’s map, the elements of NC
(m)
+ (An−1)

correspond to those m-divisible non-crossing partitions of
{1, 2, . . . ,mn} in which mn and 1 are in the same block.
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How do elements of NC
(m)
+ (An−1) look like?

1 2
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A positive 3-divisible non-crossing partition of type A11
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Enumeration in NC
(m)
+ (An−1)

Theorem

Let m, n be positive integers, The total number of positive
m-divisible non-crossing partitions of {1, 2, . . . ,mn} is given by

1

n

(
(m + 1)n − 2

n − 1

)
.

Theorem

Let m, n, l be positive integers, The number of multi-chains
π1 ≤ π2 ≤ · · · ≤ πl−1 in the poset of positive m-divisible
non-crossing partitions of {1, 2, . . . ,mn} is given by

1 + (l − 1)(m − 1)

n − 1

(
n − 1 + (l − 1)(mn − 1)

n − 2

)
.
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Enumeration in NC
(m)
+ (An−1)

Theorem

Let m, n be positive integers, The total number of positive
m-divisible non-crossing partitions of {1, 2, . . . ,mn} is given by

1

n

(
(m + 1)n − 2

n − 1

)
.

Theorem

Let m, n, l be positive integers, The number of multi-chains
π1 ≤ π2 ≤ · · · ≤ πl−1 in the poset of positive m-divisible
non-crossing partitions of {1, 2, . . . ,mn} is given by

1 + (l − 1)(m − 1)

n − 1

(
n − 1 + (l − 1)(mn − 1)

n − 2

)
.
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Enumeration in NC
(m)
+ (An−1)

Theorem

Let m and n be positive integers, For non-negative integers
b1, b2, . . . , bn, the number of positive m-divisible non-crossing
partitions of {1, 2, . . . ,mn} which have exactly bi blocks of size
mi, i = 1, 2, . . . , n, is given by

1

mn − 1

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)(
mn − 1

b1 + b2 + · · ·+ bn

)
if b1 + 2b2 + · · ·+ nbn = n, and 0 otherwise.
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Enumeration in NC
(m)
+ (An−1)

Theorem

Let m, n, l be positive integers, and let s1, s2, . . . , sl be
non-negative integers with s1 + s2 + · · ·+ sl = n − 1. The number
of multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in the poset of positive
m-divisible non-crossing partitions of {1, 2, . . . ,mn} with the
property that rk(πi ) = s1 + s2 + · · ·+ si , i = 1, 2, . . . , l − 1, is
given by

mn − s2 − s3 − · · · − sl − 1

(mn − 1)n

(
n

s1

)(
mn − 1

s2

)
· · ·
(
mn − 1

sl

)
.
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Enumeration in NC
(m)
+ (An−1)

Theorem

Let m, n, l be positive integers, For non-negative integers
b1, b2, . . . , bn, the number of multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in
the poset of positive m-divisible non-crossing partitions of
{1, 2, . . . ,mn} for which the number of blocks of size mi of π1 is
bi , i = 1, 2, . . . , n, is given by

mn − b1 − b2 − · · · − bn
(mn − 1)(b1 + b2 + · · ·+ bn)

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)
×
(

(l − 1)(mn − 1)

b1 + b2 + · · ·+ bn − 1

)
if b1 + 2b2 + · · ·+ nbn = n, and 0 otherwise.
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Enumeration in NC
(m)
+ (An−1)

Theorem

Let m, n, l be positive integers, and let s1, s2, . . . , sl , b1, b2, . . . , bn
be non-negative integers with s1 + s2 + · · ·+ sl = n − 1. The
number of multi-chains π1 ≤ π2 ≤ · · · ≤ πl−1 in the poset of
positive m-divisible non-crossing partitions of {1, 2, . . . ,mn} with
the property that rk(πi ) = s1 + s2 + · · ·+ si , i = 1, 2, . . . , l − 1,
and that the number of blocks of size mi of π1 is bi ,
i = 1, 2, . . . , n, is given by

mn − b1 − b2 − · · · − bn
(mn − 1)(b1 + b2 + · · ·+ bn)

(
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

)
×
(
mn − 1

s2

)
· · ·
(
mn − 1

sl

)
if b1 + 2b2 + · · ·+ nbn = n and s1 + b1 + b2 + · · ·+ bn = n, and 0
otherwise.
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How do elements of NC
(m)
+ (Bn) look like?

Fact: Under Armstrong’s map, the elements of NC
(m)
+ (Bn)

correspond to those m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} which are invariant under
rotation by 180◦, and in which the block of 1 contains a negative
element.
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How do elements of NC
(m)
+ (Bn) look like?

Fact: Under Armstrong’s map, the elements of NC
(m)
+ (Bn)

correspond to those m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} which are invariant under
rotation by 180◦, and in which the block of 1 contains a negative
element.
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How do elements of NC
(m)
+ (Bn) look like?
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A positive 3-divisible non-crossing partition of type B4

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Enumeration in NC
(m)
+ (Bn)

Theorem

Let m, n be positive integers, The total number of positive
m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} of type B is given by(

(m + 1)n − 1

n

)
.

Theorem

Let m, n be positive integers, The total number of positive
m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} of type B which have a zero
block of size 2ma is given by(

(m + 1)n − a− 2

n − a

)
.
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Enumeration in NC
(m)
+ (Bn)

Theorem

Let m, n be positive integers, The total number of positive
m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} of type B is given by(

(m + 1)n − 1

n

)
.

Theorem

Let m, n be positive integers, The total number of positive
m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} of type B which have a zero
block of size 2ma is given by(

(m + 1)n − a− 2

n − a

)
.
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Enumeration in NC
(m)
+ (Bn)

Theorem

Let m, n be positive integers. The number of positive m-divisible
non-crossing partitions in NC (m)(Bn) with the property that the
number of non-zero blocks of size mi of π1 is 2bi , i = 1, 2, . . . , n,
is given by (

b1 + b2 + · · ·+ bn
b1, b2, . . . , bn

)(
mn − 1

b1 + b2 + · · ·+ bn

)
.

Remark. We do not have results on chain enumeration.
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How do elements of NC
(m)
+ (Dn) look like?

Fact: Under CK’s map, the elements of NC
(m)
+ (Dn) correspond to

those m-divisible non-crossing partitions on the annulus with
{1, 2, . . . ,m(n − 1),−1,−2, . . . ,−m(n − 1)} on the outer circle
and {m(n − 1) + 1, . . . ,mn,−m(n − 1)− 1, . . . ,−mn} on the
inner circle which are invariant under rotation by 180◦, satisfy the
earlier mentioned and non-defined technical constraint, and in
which the predecessor of 1 in its block is a negative element on the
outer circle.
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A positive 3-divisible non-crossing partition of type D6
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Enumeration in NC
(m)
+ (Dn)

Theorem

Let m and n be positive integers. The number of positive
m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} of type D equals

2m(n − 1) + n − 2

n

(
(m + 1)(n − 1)− 1

n − 1

)
,

while the number of these partitions of which all blocks have
size m equals

2m(n − 1)− n

n

(
m(n − 1)− 1

n − 1

)
.

Remark. We did not go to finer levels although this may be
doable.
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A Fundamental Principle of Combinatorial Enumeration
(2004ff)

Every family of combinatorial objects satisfies the

cyclic sieving phenomenon!
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Cyclic sieving (Reiner, Stanton, White)

Ingredients:

— a set M of combinatorial objects,

— a cyclic group C = 〈g〉 acting on M,

— a polynomial P(q) in q with non-negative integer coefficients.

Definition

The triple (M,C ,P) exhibits the cyclic sieving phenomenon if

|FixM(gp)| = P
(
e2πip/|C |

)
.
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Cyclic sieving (Reiner, Stanton, White)

Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : j 7→ j + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(
e2πi ·0/4

)
,

|FixM(g1)| = 0 = P(i) = P
(
e2πi ·1/4

)
,

|FixM(g2)| = 2 = P(−1) = P
(
e2πi ·2/4

)
,

|FixM(g3)| = 0 = P(−i) = P
(
e2πi ·3/4

)
.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Cyclic sieving (Reiner, Stanton, White)

Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : j 7→ j + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(
e2πi ·0/4

)
,

|FixM(g1)| = 0 = P(i) = P
(
e2πi ·1/4

)
,

|FixM(g2)| = 2 = P(−1) = P
(
e2πi ·2/4

)
,

|FixM(g3)| = 0 = P(−i) = P
(
e2πi ·3/4

)
.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Cyclic sieving (Reiner, Stanton, White)

Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : j 7→ j + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(
e2πi ·0/4

)
,

|FixM(g1)| = 0 = P(i) = P
(
e2πi ·1/4

)
,

|FixM(g2)| = 2 = P(−1) = P
(
e2πi ·2/4

)
,

|FixM(g3)| = 0 = P(−i) = P
(
e2πi ·3/4

)
.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Cyclic sieving (Reiner, Stanton, White)

Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : j 7→ j + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(
e2πi ·0/4

)
,

|FixM(g1)| = 0 = P(i) = P
(
e2πi ·1/4

)
,

|FixM(g2)| = 2 = P(−1) = P
(
e2πi ·2/4

)
,

|FixM(g3)| = 0 = P(−i) = P
(
e2πi ·3/4

)
.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Cyclic sieving (Reiner, Stanton, White)

Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : j 7→ j + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(
e2πi ·0/4

)
,

|FixM(g1)| = 0 = P(i) = P
(
e2πi ·1/4

)
,

|FixM(g2)| = 2 = P(−1) = P
(
e2πi ·2/4

)
,

|FixM(g3)| = 0 = P(−i) = P
(
e2πi ·3/4

)
.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Cyclic sieving (Reiner, Stanton, White)

Example:

M =
{
{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}, {2, 4}

}
g : j 7→ j + 1 (mod 4)

P(q) =

[
4
2

]
q

= 1 + q + 2q2 + q3 + q4

|FixM(g0)| = 6 = P(1) = P
(
e2πi ·0/4

)
,

|FixM(g1)| = 0 = P(i) = P
(
e2πi ·1/4

)
,

|FixM(g2)| = 2 = P(−1) = P
(
e2πi ·2/4

)
,

|FixM(g3)| = 0 = P(−i) = P
(
e2πi ·3/4

)
.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



A Fundamental Principle of Combinatorial Enumeration
(2004ff)

Every family of combinatorial objects satisfies the

cyclic sieving phenomenon!

Corollary

The positive m-divisible non-crossing partitions satisfy the cyclic
sieving phenomenon.
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A cyclic action for m-divisible non-crossing partitions

Let K : NC (m)(W )→ NC (m)(W ) be the map defined by

(w0;w1, . . . ,wm)

7→
(
(cwmc

−1)w0(cwmc
−1)−1; cwmc

−1,w1,w2, . . . ,wm−1
)
.

It generates a cyclic group of order mh.
In types A, B and D, this map becomes rotation by one unit.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



A cyclic action for m-divisible non-crossing partitions

Let K : NC (m)(W )→ NC (m)(W ) be the map defined by

(w0;w1, . . . ,wm)

7→
(
(cwmc

−1)w0(cwmc
−1)−1; cwmc

−1,w1,w2, . . . ,wm−1
)
.

It generates a cyclic group of order mh.

In types A, B and D, this map becomes rotation by one unit.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



A cyclic action for m-divisible non-crossing partitions

Let K : NC (m)(W )→ NC (m)(W ) be the map defined by

(w0;w1, . . . ,wm)

7→
(
(cwmc

−1)w0(cwmc
−1)−1; cwmc

−1,w1,w2, . . . ,wm−1
)
.

It generates a cyclic group of order mh.
In types A, B and D, this map becomes rotation by one unit.

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



A cyclic action for m-divisible non-crossing partitions

Let K : NC (m)(W )→ NC (m)(W ) be the map defined by

(w0;w1, . . . ,wm)

7→
(
(cwmc

−1)w0(cwmc
−1)−1; cwmc

−1,w1,w2, . . . ,wm−1
)
.

It generates a cyclic group of order mh.

Furthermore, let

Cat(m)(W ; q) :=
n∏

i=1

[mh + di ]q
[di ]q

,

where [α]q := (1− qα)/(1− q).

Theorem (with T. W. Müller)

The triple (NC (m)(W ), 〈K 〉,Cat(m)(W ; q)) exhibits the cyclic
sieving phenomenon.
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Theorem (with T. W. Müller)
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A cyclic action for positive m-divisible non-crossing
partitions?

Bad news:

The map K : NC (m)(W )→ NC (m)(W ) defined by

(w0;w1, . . . ,wm)

7→
(
(cwmc

−1)w0(cwmc
−1)−1; cwmc

−1,w1,w2, . . . ,wm−1
)

does not necessarily map positive m-divisible non-crossing
partitions to positive ones!

Consequently: we have to modify the above action.
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A cyclic action for positive m-divisible non-crossing
partitions?

Let K+ : NC (m)(W )→ NC (m)(W ) be the map defined by

(w0;w1, . . . ,wm)

7→
(
(cwR

m−1wmc
−1)w0(cwR

m−1wmc
−1)−1;

cwR
m−1wmc

−1,w1, . . . ,w
L
m−1

)
,

where wm−1 = wL
m−1w

R
m−1 is the factorisation of wm−1 into its

“left” and its “right” part.
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A cyclic action for positive m-divisible non-crossing
partitions?

Factorisation into “left” and “right” part

Fix a reduced word c = c1 · · · cn for the Coxeter element c .
Define the c-sorting word w(c) for w ∈W to be the
lexicographically first reduced word for w when written as a
subword of c∞.
Let w◦(c) = sk1 · · · skN with N = nh/2 be the c-sorting word of the
longest element w◦ ∈W .
The word w◦(c) induces a reflection ordering given by

T =
{
sk1 <c sk1sk2sk1 <c sk1sk2sk3sk2sk1 <c . . .

<c sk1 . . . skN−1
skN skN−1

. . . sk1
}
.

Associate to every element w ∈ NC (W ) a reduced T -word Tc(w)
given by the lexicographically first subword of T that is a reduced
T -word for w .
We decompose w as w = wLwR where wR is the part of Tc(w)
within the last n reflections in T .
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Cyclic sieving for positive m-divisible non-crossing
partitions

Let K+ : NC (m)(W )→ NC (m)(W ) be the earlier defined map.

Furthermore, let

Cat
(m)
+ (W ; q) :=

n∏
i=1

[mh + di − 2]q
[di ]q

,

Conjecture

The triple (NC
(m)
+ (W ), 〈K+〉,Cat

(m)
+ (W ; q)) exhibits the cyclic

sieving phenomenon.

Conjecture

Let NC
(m;0)
+ (W ) denote the subset of NC

(m)
+ (W ) consisting of

those elements for which w0 = id. Then the triple

(NC
(m;0)
+ (W ), 〈K+〉,Cat

(m−1)
+ (W ; q)) exhibits the cyclic sieving

phenomenon.
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Cyclic sieving for positive m-divisible non-crossing
partitions

24th International Conference on Formal Power Series and
Algebraic Combinatorics, Nagoya, Hotel Lobby, 2012

Christian to Christian: “Willst Du ein weiteres
,Zyklisches-Sieben-Phänomen‘ beweisen?”1

Christian to Christian: “Sicher. Warum nicht?”2

To actually carry this out turned out to be slightly more involved
than originally anticipated by Christian.
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Cyclic sieving for positive m-divisible non-crossing
partitions

Theorem

The triple (NC
(m)
+ (W ), 〈K+〉,Cat

(m)
+ (W ; q)) exhibits the cyclic

sieving phenomenon.

Theorem

Let NC
(m;0)
+ (W ) denote the subset of NC

(m)
+ (W ) consisting of

those elements for which w0 = id. Then the triple

(NC
(m;0)
+ (W ), 〈K+〉,Cat

(m−1)
+ (W ; q)) exhibits the cyclic sieving

phenomenon.

Our proof is by a careful case-by-case verification. Along the way,
we also prove some finer cyclic sieving phenomena.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type An−1

Realisation of the cyclic action in type An−1

“In principle,” under Armstrong’s combinatorial realisation, the
map K+ becomes rotation by one unit, unless this would produce a
non-positive m-divisible partition.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type An−1

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type An−1

Theorem

Let m, n, r be positive integers with r ≥ 2 and r | (mn − 2).
Furthermore, let b1, b2, . . . , bn be non-negative integers. The
number of positive m-divisible non-crossing partitions of
{1, 2, . . . ,mn} which are invariant under the r-pseudo-rotation

K
(mn−2)/r
+ , the number of non-zero blocks of size mi being rbi ,

i = 1, 2, . . . , n, the zero block having size ma = mn−mr
∑n

j=1 jbj ,
is given by (

b1 + b2 + · · ·+ bn
b1, b2, . . . , bn

)(
(mn − 2)/r

b1 + b2 + · · ·+ bn

)
if b1 + 2b2 + · · ·+ nbn < n/r , or if r = 2 and
b1 + 2b2 + · · ·+ nbn = n/2, and 0 otherwise.

Remark. We do not have results on chain enumeration.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type An−1

Theorem

Let C be the cyclic group of pseudo-rotations of an mn-gon
generated by K+.
Then the triple (M,C ,P) exhibits the cyclic sieving phenomenon
for the following choices of sets M and polynomials P:

1 M = ÑC
(m)

+ (n), and P(q) = 1
[n]q

[
(m+1)n−2

n−1

]
q
;

2 M consists of all elements of ÑC
(m)

+ (n) the block sizes of
which are all equal to m, and P(q) = 1

[n]q

[
mn−2
n−1

]
q
;

3 M consists of all elements of ÑC
(m)

+ (n) which have rank s (or,
equivalently, their number of blocks is n − s), and

P(q) =
1

[n]q

[
n
s

]
q

[
mn − 2
n − s − 1

]
q

;
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Cyclic sieving for positive m-divisible non-crossing
partitions for type An−1

4 M consists of all elements of ÑC
(m)

+ (n) whose number of
blocks of size mi is bi , i = 1, 2, . . . , n, and

P(q) =
1

[b1 + b2 + · · ·+ bn]q

[
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

]
q

×
[

mn − 2
b1 + b2 + · · ·+ bn − 1

]
q

.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

Realisation of the cyclic action in type Bn

“In principle,” under Armstrong’s combinatorial realisation, the
map K+ becomes rotation by one unit, unless this would produce a
non-positive m-divisible partition.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

Realisation of the cyclic action in type Bn
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

Realisation of the cyclic action in type Bn
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

Theorem

Let m, n, a, r be positive integers with r | (mn − 1). Furthermore,
let b1, b2, . . . , bn be non-negative integers. The number of positive
m-divisible non-crossing partitions of
{1, 2, . . . ,mn,−1,−2, . . . ,−mn} of type B which are invariant

under the 2r -pseudo-rotation K
(mn−1)/r
+ , where the number of

non-zero blocks of size mi is 2rbi , i = 1, 2, . . . , n, the zero block
having size 2ma = 2mn − 2mr

∑n
j=1 jbj > 0, is given by(

b1 + b2 + · · ·+ bn
b1, b2, . . . , bn

)(
(mn − 1)/r

b1 + b2 + · · ·+ bn

)
.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

Theorem

Let C be the cyclic group of pseudo-rotations of the 2mn-gon
consisting of the elements {1, 2, . . . ,mn,−1,−2, . . . ,−mn}
generated by K+, viewed as a group of order 2mn − 2.
Then the triple (M,P,C ) exhibits the cyclic sieving phenomenon
for the following choices of sets M and polynomials P:

1 M = ÑC
(m)

+ (Bn), and P(q) =
[
(m+1)n−1

n

]
q2

;

2 M consists of the elements of ÑC
(m)

+ (Bn) all of whose blocks
have size m, and P(q) = [ mn−1

n ]q2 ;

3 M consists of all elements of ÑC
(m)

+ (Bn) which have rank s
(or, equivalently, their number of non-zero blocks is 2(n − s)),
and

P(q) =

[
n
s

]
q2

[
mn − 1
n − s

]
q2

;
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Bn

4 M consists of all elements of ÑC
(m)

+ (Bn) whose number of
non-zero blocks of size mi is 2bi , i = 1, 2, . . . , n, and

P(q) =

[
b1 + b2 + · · ·+ bn

b1, b2, . . . , bn

]
q2

[
mn − 1

b1 + b2 + · · ·+ bn

]
q2
.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Realisation of the cyclic action in type Dn

“In principle,” under CK’s combinatorial realisation, the map K+

becomes rotation by one unit (forward on the outer circle,
backward on the inner circle), unless this would produce a
non-positive m-divisible partition.
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Realisation of the cyclic action in type Dn
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Realisation of the cyclic action in type Dn
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Realisation of the cyclic action in type Dn
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Realisation of the cyclic action in type Dn

1 2
3

4
5
6
7

8

9

10

11

12

13
14

15
16

17
18192012

3
4

5
6

7

8

9

10

11

12

13
14
15

16
17

18 19 20

22
21
242322

21
2423 7→

2 3
4

5
6
7
8

9

10

11

12

13

14
15

16
17

18
1920123

4
5

6
7

8

9

10

11

12

13

14
15
16

17
18

19 20 1

23
22
212423

22
2124

Christian Krattenthaler and Stump
Positive m-divisible non-crossing partitions and their cylic sieving



Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Realisation of the cyclic action in type Dn
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

How do “pseudo-rotationally” invariant elements look like?
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

In this case, we contented ourselves just proving the relevant
enumeration formulae, since things get quite involved. Probably
one can do more if one is braver . . .
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Cyclic sieving for positive m-divisible non-crossing
partitions for type Dn

Theorem

Let C be the cyclic group of pseudo-rotations of the annulus with
{1, 2, . . . ,m(n − 1),−1,−2, . . . ,−m(n − 1)} on the outer circle
and {m(n − 1) + 1, . . . ,mn,−(m(n − 1) + 1), . . . ,−mn} on the
inner circle generated by K+, viewed as a group of
order 2m(n − 1)− 2.
Then the triple (M,P,C ) exhibits the cyclic sieving phenomenon
for the following choices of sets M and polynomials P:

1 M = ÑC
(m)

+ (Dn), and

P(q) =
[2m(n−1)+n−2]q

[n]q

[
(m+1)(n−1)−1

n−1

]
q2

;

2 M consists of the elements of ÑC
(m)

+ (Dn) all of whose blocks

have size m, and P(q) =
[2m(n−1)−n]q

[n]q

[
m(n−1)−1

n−1

]
q2
.
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Proof method

1 Careful combinatorial decomposition of the non-crossing
objects;

2 generating function calculus;

3 Lagrange inversion formula.
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Cyclic sieving for positive m-divisible non-crossing
partitions for the exceptional types

The (positive) m-divisible non-crossing partitions

(w0;w1, . . . ,wm)

for the exceptional types become “sparse” for large m.
This allows one to reduce the occurring enumeration problems to
finite problems.
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“Other than that, there do not seem to be enumerative results
known for these families.”
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