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2D Yang—Mills theory

Initiated by physicists in the 70’s and later ('t Hooft, Wilson, Gross, Migdal,
Witten...), made rigorous by mathematicians in the 90's and later (Driver,
Sengupta, Lévy).
@ Spacetime : G = (V,E, F) oriented topological map embedded in a
closed orientable surface © = X, ; of genus g and area t (or in R?).

@ Structure group: G compact Lie group, e.g. U(1), SU(2), SU(3), U(N)...
o Discrete Yang-Mills measure on G® = {w: E — G}:

‘heat kernel on G at time |f]| H Uniform measure on G¥

dpic4(w) = fg’mew(f))dw

‘ Curvature of w on the face f ‘
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2D Yang—Mills theory

The discrete Yang—Mills measure defines a discrete G-valued Markovian
random field (H¢)¢er(g)- It can be extended to a continuous random field
(He)eer(s), the Yang—Mills holonomy field (Lévy 2003).

o Partition function

Za(g,t) = /G2g pe([z1, 1] .. [Tg, yg))dz1dys . . . dzgdyy,

@ Wilson loop expectation, for / =e1...¢ex, €; € E:

E[tr(H,)] = / tr(w(er) ... w(ek))dpe,at(w).
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Large N regime

Principle: take G = U(NN) (or SU(N), or any compact classical group

G C GLN(C)) and let N — oo.

— Relation to random matrix theory and free probability.

— Gauge/string duality (Gross—Taylor 1993, unsolved): partition function
and Wilson loop expectations for SU(NN) should have topological
expansions in % and be related to string theory.

— Master field (Singer 1995, almost fully solved): There is a “master field”
® : L(X) — C such that for any ¢ € L(X), for structure group U(N),

Jim_Eftx(Hy)] = (0).
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Simple loops: loops with no self-intersections. They can be separating or
non-separating, depending on the surface obtained by removing the loop:

’ non-separating ‘ ’ separating ‘

We shall focus on contractible simple loops, which are always separating. For
other simple loops, it is another story (Dahlqvist-TL 2023, 2025).




Asymptotic) representation theory

Young diagram associated to Poissonized Plancherel measure with parameter 8 = 500

— timit shape
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Representation theory of compact groups

A representation of a compact Lie group G is a couple (p, V') where
p: G — GL(V) (continuous) group morphism.

character: x,: g € G — Tr(p(g)).
dimension: d, = dimV = x,(1¢).
(p, V) is irreducible if V is the only nontrivial invariant subspace of V' for

the action of p. The dual G is the countable set of equivalence classes A
of irreducible representations of G.

The characters x of irreducible representations are eigenfunctions of the
Laplacian:

Axx = —c2(A)xa,
and c2(A) > 0 is called the Casimir.
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Representation theory as a noncommutative Fourier theory

Peter—Weyl's theorem

The irreducible characters {xx, A € @} form a Hilbert basis of the Hilbert space

H={feL*G): f(hgh™') = flg), Vg,h € G} C L*(G).

— Application to the heat kernel:

pe(g) = > e 22 Mdyys (g).

xeG

Proposition (Migdal 1975)

For any g > 0 and t > 0,

Za(g,t) = Z di72gefécz(>\).
Ae@

— Forg=1: Zg(1,t) = Zeféczu).
— Forg>2andt— 0, Zg(g,0) = Zdi_Q‘q.
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Representation theory of U(N)
Unitary group: U(N) ={U € Mn(C): UU* =U*U = In} C GLn(C).
@ Dual:

UN)={A=1,..,2n) €ZY : > > v}

@ Dimension: N — o
o= [ ML

1<i<j<N J—
© Character:
Nj+N—j
det (ac-J+ ])

K3

Xa(U) = sa(@1, ... on) = det(z¥ )
Schur function
where z1,...,zN eigenvalues of U € U(N).
Q Casimir:
1 < 1 1
— . . — D) = - 2 — 2
) = SO MOHNHL2) = T2 = (I3l = ol).
where
_(N-1 N-3 _N—3_N—1
p_ 2 bl 2 A ] 2 ) 2 N



Gaussian measure on U(N)

For t > 0, set ¢: = e~*/? € (0,1). Distribution ¥y (q:) on ﬁ(N):
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t ~
=1 teW gy, e BN,
Zuy(ny(1,1) a )

P(A = p)
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Gaussian measure on U(N)

For t > 0, set ¢: = e~*/? € (0,1). Distribution ¥y (q:) on ﬁ(N):

1
o ZU(N)(L t)

“Discrete Gaussian" because

P(\ = p) e"320) e T(N).

—Lea) _ o= (INHRIP=1012) ot . o= 2w IM+0I12

(& [&

— Case N = 1: integer Gaussian distribution
P(n) = G(qt)67%"2, Vn € Z,
where

n2
0(g)=> q", VYgeC,lql <1.

nez



Application to Wilson loops

Theorem (TL 2025)

Let ¥ be a compact surface of genus g > 1. For any contractible simple loop ¢
in g+ with interior area s € (0,%), if A ~ ¥n(gt),

Zuav)(L,2) Ay —$(ca(w)—ca(n
Eltr(Hy)] = —————F e~ 3(c2(w)=c2(A))
[ ( 15)] Zu(N)(gﬂf) ”Z\,\Ndig_l
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Integer partitions

An integer partition is a finite family o = (a1, ..., @, ) of positive integers such
that a1 > ... > a,. Set £(a) =7 its length and |o| = >, a its size. It is
represented by a Young diagram.

‘ ‘@1

(65}

a
o The set P, of partitions of size n is in bijection with the dual of the
symmetric group Sp: Pp ~ Sp.

@ For any n > 1, set p(n) = #P,, the number of partitions of n. The
corresponding generating function satisfies

> p(n)g" =g
n>1
where

=Ta-a

m=1



Random partitions

Fix ¢ € (0,1). The g-uniform measure % (q) (Vershik 1995, Bloch—Okounkov
2000) is a measure on P defined as follows:

© Draw n randomly with geometric distribution of parameter 1 — q.
@ Conditionally to |A| = n, draw X uniformly in P,,.

It follows that
P(\) = é(q)g!, VA€ P.



Random partitions

Fix ¢ € (0,1). The g-uniform measure % (q) (Vershik 1995, Bloch—Okounkov
2000) is a measure on P defined as follows:

© Draw n randomly with geometric distribution of parameter 1 — q.
@ Conditionally to |A| = n, draw X uniformly in P,,.
It follows that
P(\) = ¢(q)g"™, VAeP.

Other well-known distribution: the Poissonized Plancherel measure, where n
follows a Poisson distribution and conditionally to |A\| = n, X follows the
Plancherel distribution on P,.



Highest weights/partitions correspondence

Introduce a set of couplings Ay C P x P X Z, for fixed N, with a condition on
lengths of partitions.

A — TWV)
a? /8777‘) H >\

There is a bijection Ay : { ( given by

A=An(a,B8,n) = (1 +1n,...,000) +n,n,...,0,10— Byg),-..,n— P1).

o = (2,1,1) 6: (4,4,3,1) A/\:)‘S(a7672)

|

.

\J

01 2 3 4 5|16|7]|8
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Asymptotic decompositions

The bijection comes from a special version of the Schur—Weyl duality (Koike
1989) and has interesting asymptotic implications:

o (TL 2022) for any (a, 3,n) € AN,

e2(An (e B,m)) = la] + 8] +n® + O(N ),

o (TL 2025) for any (a, 3,n) € An such that |alf,|8] < N7, v € (0, 1),

f()éjgNla‘Jﬁ‘s‘ 3vy—1
dA;g(a,ﬂ,n) - W (1 + O(N 7 )) )

where f, number of standard Young tableaux of shape «.



Coupling and decoupling of random partitions

Let A ~ ¥n(q), and «, B8,n be independent random variables such that
a,B~%(q) and n ~ % (q).

Theorem (TL-Maida 2025)

For any measurable f : U(N) — R,

E[f(V)] = j((;))gE[f(AN(a,ﬂ,n))q%F‘“’B’”)lAN (o B, )],

with an explicit F': Ay — R.




Coupling and decoupling of random partitions

Let A ~ ¥n(q), and «, B8,n be independent random variables such that
a,B~%(q) and n ~ % (q).

Theorem (TL-Maida 2025)

For any measurable f : U(N) — R,

E[f(V)] = Qf((;))gE[f(AN(a,ﬂ,n))q%F‘“’B’”)lAN (o B, )],

with an explicit F': Ay — R.

— The large N asymptotics of ¥n(q) is given by % (q) @ % (q) @ %1 (q)
(asymptotic decoupling), and the speed of convergence is controlled by

deviation inequalities of % (q).
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Application 1: Asymptotic expansion of the partition function

Theorem (TL-Maida 2025)

For any ¢ > 0, there are coefficients (ax(t))r>0 such that for any p > 0,
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and the coefficients ax(t) have explicit expressions in terms of Hurwitz numbers
and theta functions.
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Theorem (TL-Maida 2025)

For any ¢ > 0, there are coefficients (ax(t))r>0 such that for any p > 0,

a1 (1) ap(t) —2p—2
Zyny(1,t) = ao(t) + Nz +...+ ]:}21) +O(N~#72),
and the coefficients ax(t) have explicit expressions in terms of Hurwitz numbers
and theta functions.

— The asymptotic expansion is also a topological expansion: it solves
(partially) the gauge/string duality conjectured by Gross and Taylor
(1993).

— Upcoming work (TL-Maida 2025+): more explicit links with random
surfaces and string theory (Gromov—Witten invariants)



Application 2: speed of convergence of observables

Theorem (TL 2025)

Let ¥ be a compact surface of genus g > 1, and fix t > s > 0. As N — oo, we
have:

o lfg>2:

Zuvy(g,t) = 0(q:) + O(N*79),  Eftr(Hy)] = gs + O(N ).

o If g=1, for any € > 0:

Zyny(1,t) = ;((;t)L +O(N™%), E[tr(He)] = gs + O(N~'H9).




