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Pitman’s theorem

Pitman’s theorem (1975)
• Let (Bt)t≥0 be a one-dimensional Brownian motion, then(

Zt := Bt − 2 inf
0≤s≤t

Bs

)
t≥0

is a Bessel process of dimension 3 starting from 0.

• The law of Bt conditionally to (Zs)0≤s≤t is uniform on [−Zt ,Zt ].

A Bessel process of dimension 3 is a stochastic process (Zt)t≥0 such

that (Zt)t≥0
law
= ||B(3)

t || with B(3) a Brownian motion of dimension 3.

A Bessel process of dimension 3 = “Brownian motion conditioned to
stay forever positive" using Doob’s transform.
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Matsumoto–Yor’s theorem

Let (B
(µ)
t )t≥0 be a one-dimensional Brownian motion with drift µ ∈ R.

Matsumoto–Yor’s theorem (2000)

Z
(µ)
t := eB

(µ)
t

∫ t

0
e−2B(µ)

s ds

is a diffusion process on R+ with infinitesimal generator given by :

1
2
z2 d2

dz2 +

[(
1
2

+ µ

)
z +

(
K1−µ
Kµ

)(
1
z

)]
d

dz

where Kµ is a Macdonald function (modified Bessel function of the second
kind).

H. Matsumoto and M. Yor. An analogue of Pitman’s 2M − X theorem
for exponential Wiener functionals. I. A time-inversion approach. Nagoya
Math. J. 159 125 - 166, 2000.
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Laplace’s principle

Let A ⊂ Rd and ϕ : Rd → R be a continuous function such that :∫
A
e−ϕ(x)dx < +∞.

Then :

lim
θ→+∞

1
θ
log
(∫

A
e−θϕ(x)dx

)
= − inf

x∈A
ϕ(x).
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Extension of the Matsumoto–Yor theorem

The Matsumoto–Yor theorem can be interpreted through (Bt)t≥0 :

Bt =

(
eB

(µ)
t 0

eB
(µ)
t
∫ t
0 e−2B(µ)

s ds e−B
(µ)
t

)

This process is the solution to the following SDE in the sense of
Stratonovitch :

dBt = Bt ◦

(
dB

(µ)
t 0
dt −dB(µ)

t

)
with B0 = I2.

This SDE, in its general form, was introduced by Biane, Bougerol and
O’Connell.

O’Connell and then Chhaibi extended the Matsumoto–Yor theorem in the
context of semisimple Lie groups.
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Random walk on a subgroup of SL2

C. Hérent. A discrete-time Matsumoto–Yor theorem. Preprint 2024.
(hal-04683351), arXiv :2409.01044. Accepted for publication in ESAIM :
Probability and Statistics.

Let γ := (γn)n∈N be a family of i.i.d. random variables and let δ ∈ R∗ be a
deterministic parameter. Let (Xn)n∈N, (Zn)n∈N be two processes such as :(

Xn+1 0
Zn+1 X−1

n+1

)
=

(
Xn 0
Zn X−1

n

)(
γn 0
δ γ−1

n

)
with, (

X0 0
Z0 X−1

0

)
= I2.
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Random walk on a subgroup of SL2

By recurrence, we have the formula for n ∈ N :(
Xn 0
Zn X−1

n

)
=

( ∏n−1
i=0 γi 0

δ
∑n−1

k=0
∏k−1

i=0 γ
−1
i

∏n−1
j=k+1 γj

∏n−1
i=0 γ

−1
i

)
.

In the following, we will assume (except for the continuous limit of the
random walk) that δ = 1 to simplify certain expressions.
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Discrete analogue of the Matsumoto–Yor theorem

For the common law of γi , we take a GIG (λ, a, a) distribution.

The
probability density function for this distribution is given by :

f (x) :=
1

2Kλ(a2)
xλ−1e−

a2
2 (x+ 1

x
)1x>0

where a > 0, λ ∈ R and Kλ is the Macdonald function.
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Discrete analogue of the Matsumoto–Yor theorem

Theorem (Markov property of the process Z )

• The process (Zn)n∈N∗ is a homogeneous Markov chain from Z1 = 1 with
transition kernel given, for x > 0, by :

Q(x , dy) =

(
1

2Kλ(a2)

) Kλ

(
a2

y

)
Kλ

(
a2

x

) 1
y
e−

a2(x2+y2+1)
2xy 1R∗

+
(y)dy .

• In addition, for all n ∈ N∗ :

P (Xn ∈ dx |Zn, · · · ,Z1) = Λ(Zn, dx) a.s.

with, for z > 0 : Λ(z , dx) = 1
2Kλ

(
a2
z

)xλ−1e−
a2
2z (x+ 1

x )1R∗
+

(x)dx .
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Intertwining relation and Markov property

Theorem
Let (γn)n∈N be a sequence of i.i.d. random variables with a density
function C1 supported on R+. Then, there exists a family of probability
measures (Λ(z , ·))z>0 such that, for all n ∈ N∗ :

P (Xn ∈ dx |Zn, · · · ,Z1) = Λ(Zn, dx) p.s.

if and only if the sequence (γn)n∈N is distributed with a GIG (λ, a, a) law
with parameters a > 0 and λ ∈ R.

Charlie Hérent (MAP5) CORTIPOM conference, Le Croisic 10 juin 2025 11 / 15



Dufresne’s identity

Dufresne’s identity establishes the following equality in law for µ > 0 :

∫ +∞

0
e−2B(µ)

s ds
law
=

1
2ξ

where ξ is a random variable with distribution Gamma(µ), that is, with
probability density 1

Γ(µ)x
µ−1e−x1x>0.
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Discrete-time analogue of the Dufresne identity

Theorem

For λ > 0, the distribution of the random variable

N(λ)
∞ =

+∞∑
k=0

γ−1
k

(
k−1∏
i=0

γ−1
i

)2

is given by the inverse-gamma density distribution π defined by :

π(x) =
a2λ

2λΓ(λ)
x−λ−1e−

a2
2x 1x>0

where Γ is Euler’s gamma function.
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Convergence of discrete processes to their continuous
analogues

We have the following convergence for the random walk on the group with
δ = δn such that δn := 1

n et γ(
√
n)

i ∼ GIG (λ,
√
n,
√
n) when n→ +∞ :(

Xbntc 0
Zbntc X−1

bntc

)
law→

(
eB

(λ)
t 0

eB
(λ)
t
∫ t
0 e−2B(λ)

s ds e−B
(λ)
t

)
.
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Thank you for your attention !
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Appendix : New characterisation of GIG laws

X2 = γ0γ1, X3 = γ0γ1γ2, Z2 = γ−1
0 + γ1, Z3 = γ−1

0 γ−1
1 + γ−1

0 γ2 + γ1γ2.

Theorem (Characterisation of GIG laws)

Let γ0, γ1, γ2 be three i.i.d. random variables with a density function C1

supported on R+. If the following conditional laws are equal, for z , u > 0 :

L (X3|Z3 = z ,Z2 = u) = L (X2|Z2 = z) ,

then, γ0 is distributed according to a law GIG (λ, a, a) with a > 0 and
λ ∈ R.
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Appendix : Intertwining relation and Markov property

Let P and Q be two Markov kernels on the measurable spaces (E , E) and
(F ,F) respectively. Consider a Markov kernel Λ from F to E , that is, an
application :

Λ : (u,A) 7→ Λ(u,A) with u ∈ F and A ∈ E

such that for all u ∈ F , Λ(u, ·) is a probability measure on E , and for all
A ∈ E , Λ(·,A) belongs to the space of bounded measurable functions on F .



Appendix : Intertwining relation and Markov property

Definition (Intertwining)
We will then say that the Markov kernels P and Q are intertwined by Λ if
we have the relation :

ΛP = QΛ

where the kernel composition is defined by :

ΛP(u, dv) :=

∫
E
P(y , dv)Λ(u, dy).

We will say that two semigroups of Markovian kernels are intertwined if this
relationship occurs, with the same Λ, for all times.



Appendix : Intertwining relation and Markov property

Rogers–Pitman criterion
Let φ : E → F be a measurable function, we define the kernel Φ such
that : Φf := f ◦ φ. Let Λ be a Markov kernel from F to E verifying the two
conditions :

(a) ΛΦ = I , the identity kernel on F .

(b) For all t ≥ 0, the Markov kernel from F to F , Qt := ΛPtΦ

satisfies the identity : ΛPt = QtΛ.

Let X be a Markov process with semigroup (Pt)t≥0 and initial distribution
λ := Λ(u, ·) where u ∈ F . Then, for all t ≥ 0 and A ∈ E :

P (Xt ∈ A|φ ◦ Xs , 0 ≤ s ≤ t) = Λ(φ ◦ Xt ,A) a.s.

Moreover, φ ◦ X is Markov with initial state u and semigroup (Qt)t≥0.
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