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Dyck paths and Tamari partial order

e Dyck path: steps 41, goes from 0 to 0, stays > 0, length: 2n.
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Dyck paths and Tamari partial order

e Dyck path: steps 41, goes from 0 to 0, stays > 0, length: 2n.

e Tamari partial order relation:

down step

excursion following P < Q = P is below Q
the down step

e This is the famous Tamari poset



Dyck paths and Tamari partial order - (parenthesis)

N — /TN
e Graph with Cat(n) vertices

e The mixing time of the simple random walk is unknown! (conjecture
O(n3/?) Aldous 1990's, impressive partial results by Eppstein-+Frishberg)

e The diameter is 2n — o(n) [Sleator-Thurston-Tarjan, Pournin], mysterious
connections with hyperbolic geometry!
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e This is only the beginning of rich analogies between Tamari intervals and maps...
see the works of [Fang] and collaborators. And also [MBM-GC-LFPR]
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Random Tamari intervals (?)

e Theorem [C’24]. Let (P,,Q,) be a random Tamari interval chosen uniformly in Z,.
Let I € [0,2n] be a uniformly chosen abscissa. Then:
V3271 1 T(3k + HD(3k + 2)

Clik+3)

e
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Note: Z = (XY)Y/4 where X ~ (2,

paths

Simulations: Wenjie Fang.
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Random Tamari intervals (?)

e Theorem [C’24]. Let (P,,Q,) be a random Tamari interval chosen uniformly in Z,.
Let I € [0,2n] be a uniformly chosen abscissa. Then:

V3271 T(3k + HD(3k + %).
VT LGk +3)

Qn (1)
=i 7 E[ZF] =

< gives the height of typical points in the canonical Scnhyder
wood of a random plane triangulation! (new !)

paths ... ] .
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(Classical) Enumeration of Tamari intervals (MBM 1 Erc Fusy 4 LFPRI]

A A

Tamari Interval of size n + 1 _ _ _
Tamari Interval with a marked Tamari Interval

zero on lower path

Series of total size n

intervals: F(t; :L“)

t: size
x: number of zeroes  of
the lower path

F(t;z) =Y F(t)z'

1>0



(Classical) Enumeration of Tamari intervals (MBM 1 Erc Fusy 4 LFPRI]

A

Tamari Interval of size n + 1 _ _ _
Tamari Interval with a marked Tamari Interval

zero on lower path

Series of total size n
intervals: F(t;r) =a+t) Fi(t) (:v +a2 4t x@')F(t, z)
t: size 121
: ' — 1
et TS Ty
= E)E(tw F(t,r) — F(t,1)
= r+tr 7$—1 —F'(t,x)

e Polynomial equation with one catalytic variable. Effective theory from
Bousquet-Mélou—Jehanne, the solution is algebraic and explicit — Chapoton’s theorem

on enumeration.
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Tamari Interval of size n + 1 _ _ _
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Series of total size n

intervals:

t: size
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e Polynomial equation with one catalytic variable. Effective theory from
Bousquet-Mélou—Jehanne, the solution is algebraic and explicit — Chapoton’s theorem

on enumeration.



Modest contribution: we add a marked point...

H(x:t,s) series of interval with a marked point t: size
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anot Z(P,Q)elnx tac(P) D im0 9,

point.
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Modest contribution: we add a marked point...

H(x:t,s) series of interval with a marked point t: size

x: number of zeroes of the lower path
H(x)=H(t,z,s) =

n : s: height of the upper path at the marked
Z 4 Z xcontact(P) 22 SQ(@)
n>0 (P,Q)eZ, i=0

point.

One (trivially) writes an equation for H by pointing the preceeding decomposition:

Tamari interval of size n + 1 N _ N
Tamari interval with a marked Tamari interval

zero on lower path

If we know F'(z) (and we do) this is nothing but a (linear!) one-variable catalytic equation for H.
This is solved "illico” with the kernel method!



Kernel method

H(x;t,s) series of intervals with a marked point

H(x)=F(z)+ 3:{:75]7(:1:)[1’(2)j : flﬂ) + :L’tF<xx) : fﬂ)H(:p)
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—— This result contains in principle the whole distribution of the random variable
Qrn(I).... But how to deduce the wanted asymptotic?!?

n 2n 1
h(t,s) == anot Z(P,Q)eln D iz 5@,



Transfer theorem and D-finiteness...

e Transfer theorem [Flajolet-Odlyzko]. Let f(¢) be algebraic, with a unique
dominant singularity at p > 0. If f(t) ~c(1 —t/p)® when t — p,
then [t"]f(t) ~ cI'(—a)n~*"1p~™ when n — oo. (@ & N).
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— to perform the asymptotics of moments it is enough to know the dominant
singularity of Ay for all kK > 0.

— from an algebraic equation for H(1), | can do this automatically (in principle) for
any fixed k.
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— to perform the asymptotics of moments it is enough to know the dominant
singularity of Ay for all kK > 0.

— from an algebraic equation for H(1), | can do this automatically (in principle) for
any fixed k.

e The trick — the real good thing in this work :)

Every algebraic series is D-finite (solution of a linear DE with polynomial coeffs)

Our series, seen in the variable s, and even (s — 1), is algebraic over algebraic over Q(¢)
Therefore it is D-finite: its coefficients, the hy, satisfy a polynomial recurrence
relation!
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Under reasonable hypotheses, one can determine the dominant singularity of hj easily
by induction on k!l

In our case we show by induction: if not already known, this trick is the most

hk(t> ~ Ck(l _ t/(27/256))1_%k interesting thing in my paper

V6(3k— 4)(3k 8)
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Two catalytic variables... but not for real
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Y r—1

— Appear: G(z,y),G(1,y),G(1,1)... but not G(x,1).

— this is not-so-hard-to-solve!
. see the equation as a catalytic equation in x where y is a parameter...
. once solved (only the kernel method here), we only have an equation with one
catalytic variable (y). Et voila!

— This method of successive elimination has been used since (independently, and much
more generally) by Bousquet-Mélou and Notarantonio.

— For the asymptotic, the " D-finite trick” again works!
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Conclusion

e Contat-Curien + Bertoin-Curien-Riera (paper out since, book still to come) can do
the full scaling limit of the path, but I'm not sure they can get the explicit limit law
for a random point.

e Their work probably implies that this limit law is universal for "trees described by
positive non-linear Bousquet-Mélou—Jehanne-type equation” (i.e. the ones for which
they have the universal scaling limit)

e |I'd like to have more applications of my D-finite trick!



Thanks!



