On the scaling of random Tamari intervals and Schnyder woods of random triangulations (with an asymptotic D-finite trick)

closing conference of the Cortipom project, le Croisic, June 2025

On the scaling of random Tamari intervals and Schnyder woods of random triangulations (with an asymptotic D-finite trick)

closing conference of the Cortipom project, le Croisic, June 2025

• Dyck path: steps ± 1 , goes from 0 to 0, stays ≥ 0 , length: 2n.

• Dyck path: steps ± 1 , goes from 0 to 0, stays ≥ 0 , length: 2n.

• Tamari partial order relation:

• Dyck path: steps ± 1 , goes from 0 to 0, stays ≥ 0 , length: 2n.

• Tamari partial order relation:

• This is the famous Tamari poset

• Dyck path: steps ± 1 , goes from 0 to 0, stays ≥ 0 , length: 2n.

• Tamari partial order relation:

• This is the famous Tamari poset

• Dyck path: steps ± 1 , goes from 0 to 0, stays ≥ 0 , length: 2n.

• Tamari partial order relation:

• This is the famous Tamari poset

• Dyck path: steps ± 1 , goes from 0 to 0, stays ≥ 0 , length: 2n.

Dyck paths and Tamari partial order - (parenthesis)

- Graph with Cat(n) vertices
- The mixing time of the simple random walk is unknown! (conjecture $O(n^{3/2})$ Aldous 1990's, impressive partial results by Eppstein+Frishberg)
- The diameter is 2n o(n) [Sleator-Thurston-Tarjan, Pournin], mysterious connections with hyperbolic geometry!

Enumeration of intervals

• [Chapoton 06] The number of pairs [P, Q] such that $P \prec Q$ is:

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}.$$

Enumeration of intervals

• [Chapoton 06] The number of pairs [P, Q] such that $P \preccurlyeq Q$ is:

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}.$$

• ... this is pretty. This is also the number of plane 3-connected triangulations with n + 2 vertices [Tutte 62, Bernardi-Bonichon 09]. The Bernardi-Bonichon goes through Schnyder woods of triangulations:

Enumeration of intervals

• [Chapoton 06] The number of pairs [P, Q] such that $P \preccurlyeq Q$ is:

$$I_n = \frac{2}{n(n+1)} \binom{4n+1}{n-1}.$$

• ... this is pretty. This is also the number of plane 3-connected triangulations with n + 2 vertices [Tutte 62, Bernardi-Bonichon 09]. The Bernardi-Bonichon goes through Schnyder woods of triangulations:

• This is only the beginning of rich analogies between Tamari intervals and maps... see the works of [Fang] and collaborators. And also [MBM-GC-LFPR]

$$(n+1)^{l-2} \prod_{i=1}^{\ell(\lambda)} \binom{2\lambda_i}{\lambda_i} \quad \text{vs} \quad 2(n-1)_{\ell(\lambda)-2} \prod_{i=1}^{\ell(\lambda)} \binom{2\lambda_i-1}{\lambda_i}$$

• Theorem [C'24]. Let (P_n, Q_n) be a random Tamari interval chosen uniformly in \mathcal{I}_n . Let $I \in [0, 2n]$ be a uniformly chosen abscissa. Then:

$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z \quad , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}$$

Note: $Z = (XY)^{1/4}$ where $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ and $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2})$.

• Theorem [C'24]. Let (P_n, Q_n) be a random Tamari interval chosen uniformly in \mathcal{I}_n . Let $I \in [0, 2n]$ be a uniformly chosen abscissa. Then:

$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z \quad , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.$$

Note: $Z = (XY)^{1/4}$ where $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ and $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2}).$
Moreover: $\frac{P_n(I)}{n^{3/4}} \longrightarrow \frac{Z}{3}.$

• Theorem [C'24]. Let (P_n, Q_n) be a random Tamari interval chosen uniformly in \mathcal{I}_n . Let $I \in [0, 2n]$ be a uniformly chosen abscissa. Then:

$$\begin{split} \frac{Q_n(I)}{n^{3/4}} &\longrightarrow Z \quad , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.\\ \text{Note: } Z &= (XY)^{1/4} \text{ where } X \sim \beta(\frac{1}{3}, \frac{1}{6}) \text{ and } Y \sim \Gamma(\frac{2}{3}, \frac{1}{2}).\\ \text{Moreover: } \frac{P_n(I)}{n^{3/4}} &\longrightarrow \frac{Z}{3}. \end{split}$$
Theorem [C'24]. One has $\frac{\tilde{Q}_n(J) - 3\tilde{P}_n(J)}{\sqrt{n}} = O_p(1) \text{ and so } \tilde{P}_n(J) = \left(\frac{1}{3} + o(1)\right) \tilde{Q}_n(J)$

Moreover: $\frac{P_n(I)}{2} \longrightarrow \frac{Z}{2}$.

• Theorem [C'24]. Let (P_n, Q_n) be a random Tamari interval chosen uniformly in \mathcal{I}_n . Let $I \in [0, 2n]$ be a uniformly chosen abscissa. Then:

$$\frac{Q_n(I)}{n^{3/4}} \longrightarrow Z \quad , \quad \mathbf{E}[Z^k] = \frac{\sqrt{3} \cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k + \frac{1}{3})\Gamma(\frac{1}{4}k + \frac{2}{3})}{\Gamma(\frac{1}{4}k + \frac{1}{2})}.$$

Note: $Z = (XY)^{1/4}$ where $X \sim \beta(\frac{1}{3}, \frac{1}{6})$ and $Y \sim \Gamma(\frac{2}{3}, \frac{1}{2})$.

gives the height of typical points in the canonical Scnhyder wood of a random plane triangulation! (new !)

Simulations: Wenjie Fang.

(Classical) Enumeration of Tamari intervals

t: size

x: number of zeroes of

the lower path

 $F(t; \mathbf{x}) =: \sum_{i \ge 0} F_i(t) \mathbf{x}^i$

(Classical) Enumeration of Tamari intervals

 Polynomial equation with one catalytic variable. Effective theory from Bousquet-Mélou−Jehanne, the solution is algebraic and explicit → Chapoton's theorem on enumeration.

(Classical) Enumeration of Tamari intervals

• Polynomial equation with one catalytic variable. Effective theory from Bousquet-Mélou–Jehanne, the solution is algebraic and explicit \rightarrow Chapoton's theorem on enumeration.

 ${\cal H}(x;t,s)$ series of interval with a marked point

$$\begin{split} H(x) &\equiv H(t, x, s) := \\ \sum_{n \geq 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}. \end{split}$$

t: size

x: number of zeroes of the lower path*s*: height of the upper path at the marked point.

H(x;t,s) series of interval with a marked point

$$\begin{split} H(x) &\equiv H(t, x, s) := \\ \sum_{n \geq 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}. \end{split}$$

t: size

x: number of zeroes of the lower paths: height of the upper path at the marked point.

$$H(x) = F(x) + sxt \frac{H(x) - H(1)}{x - 1}F(x) + xt \frac{F(x) - F(1)}{x - 1}H(x).$$

H(x;t,s) series of interval with a marked point

 $H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$

t: size

x: number of zeroes of the lower path*s*: height of the upper path at the marked point.

 ${\cal H}(x;t,s)$ series of interval with a marked point

$$\begin{split} H(x) &\equiv H(t,x,s) := \\ \sum_{n \geq 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}. \end{split}$$

t: size

x: number of zeroes of the lower path*s*: height of the upper path at the marked point.

H(x;t,s) series of interval with a marked point

 $H(x) \equiv H(t, x, s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}.$

t: size

x: number of zeroes of the lower path*s*: height of the upper path at the marked point.

 ${\cal H}(x;t,s)$ series of interval with a marked point

$$\begin{split} H(x) &\equiv H(t, x, s) := \\ \sum_{n \geq 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} x^{\operatorname{contact}(P)} \sum_{i=0}^{2n} s^{Q(i)}. \end{split}$$

t: size

x: number of zeroes of the lower path*s*: height of the upper path at the marked point.

One (trivially) writes an equation for H by pointing the preceding decomposition:

If we know F(x) (and we do) this is nothing but a (linear!) one-variable catalytic equation for H. This is solved "illico" with the kernel method!

 ${\cal H}(x;t,s)$ series of intervals with a marked point

$$H(x) = F(x) + \frac{s}{x} x t F(x) \frac{H(x) - H(1)}{x - 1} + x t \frac{F(x) - F(1)}{x - 1} H(x).$$

H(x;t,s) series of intervals with a marked point

$$H(x) = F(x) + \frac{s}{x} x t F(x) \frac{H(x) - H(1)}{x - 1} + x t \frac{F(x) - F(1)}{x - 1} H(x).$$

We write: $K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$

$$K(x) = \left(-1 + sxt\frac{F(x)}{x-1} + xt\frac{F(x) - F(1)}{x-1}\right).$$

H(x;t,s) series of intervals with a marked point

$$H(x) = F(x) + \frac{s}{x} x t F(x) \frac{H(x) - H(1)}{x - 1} + x t \frac{F(x) - F(1)}{x - 1} H(x).$$

We write: $K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$

$$K(x) = \left(-1 + sxt\frac{F(x)}{x-1} + xt\frac{F(x) - F(1)}{x-1}\right).$$

We look for x = X(t, s) that cancels K(x), we substitue and find H(1). Recall that F(x) is known!

H(x;t,s) series of intervals with a marked point

$$H(x) = F(x) + \frac{s}{x} x t F(x) \frac{H(x) - H(1)}{x - 1} + x t \frac{F(x) - F(1)}{x - 1} H(x).$$

We write: $K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$

$$K(x) = \left(-1 + sxt\frac{F(x)}{x-1} + xt\frac{F(x) - F(1)}{x-1}\right).$$

We look for x = X(t, s) that cancels K(x), we substitue and find H(1). Recall that F(x) is known!

• Theorem [C'24]. The series h(t,s) = H(1;t,s) is algebraic, with an explicit rational parametrisation:

$$h(t,s) = \frac{(1-2z-Uz^2)^2(1+U)}{(1-z)^6} \qquad \begin{array}{c} t = z(1-z)^3 \\ s = \frac{U(1-z)^3}{z(1+U)^2(1-Uz^2-2z)}. \end{array}$$

H(x;t,s) series of intervals with a marked point

$$H(x) = F(x) + \frac{s}{x} x t F(x) \frac{H(x) - H(1)}{x - 1} + x t \frac{F(x) - F(1)}{x - 1} H(x).$$

We write: $K(x)H(x) = F(x) - \frac{sxtF(x)H(1)}{(x-1)}$

$$K(x) = \left(-1 + sxt\frac{F(x)}{x-1} + xt\frac{F(x) - F(1)}{x-1}\right).$$

We look for x = X(t, s) that cancels K(x), we substitue and find H(1). Recall that F(x) is known!

• Theorem [C'24]. The series h(t,s) = H(1;t,s) is algebraic, with an explicit rational parametrisation:

$$h(t,s) = \frac{(1-2z-Uz^2)^2(1+U)}{(1-z)^6} \qquad \begin{array}{c} t = z(1-z)^3 \\ s = \frac{U(1-z)^3}{z(1+U)^2(1-Uz^2-2z)}. \end{array}$$

 \rightarrow This result contains in principle the whole distribution of the random variable $Q_n(I)$ But how to deduce the wanted asymptotic?!?

$$h(t,s) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} \sum_{i=0}^{2n} s^{Q(i)}.$$

Transfer theorem and D-finiteness...

• Transfer theorem [Flajolet-Odlyzko]. Let f(t) be algebraic, with a unique dominant singularity at $\rho > 0$. If $f(t) \sim c(1 - t/\rho)^{\alpha}$ when $t \to \rho$, then $[t^n]f(t) \sim c\Gamma(-\alpha)n^{-\alpha-1}\rho^{-n}$ when $n \to \infty$. $(\alpha \notin \mathbb{N})$.

Transfer theorem and D-finiteness...

• Transfer theorem [Flajolet-Odlyzko]. Let f(t) be algebraic, with a unique dominant singularity at $\rho > 0$. If $f(t) \sim c(1 - t/\rho)^{\alpha}$ when $t \to \rho$, then $[t^n]f(t) \sim c\Gamma(-\alpha)n^{-\alpha-1}\rho^{-n}$ when $n \to \infty$. $(\alpha \notin \mathbb{N})$.

• Application to the asymptotics of moments.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$
, alors $\frac{[t^n]h_k}{[t^n]h_0} = \mathbf{E}[(Q_n(I))_k]$
 $(m)_k := m(m-1)\dots(m-k+1)$

 \rightarrow to perform the asymptotics of moments it is enough to know the dominant singularity of h_k for all $k \ge 0$.

 \rightarrow from an algebraic equation for H(1), I can do this automatically (in principle) for any fixed k.

Transfer theorem and D-finiteness...

• Transfer theorem [Flajolet-Odlyzko]. Let f(t) be algebraic, with a unique dominant singularity at $\rho > 0$. If $f(t) \sim c(1 - t/\rho)^{\alpha}$ when $t \to \rho$, then $[t^n]f(t) \sim c\Gamma(-\alpha)n^{-\alpha-1}\rho^{-n}$ when $n \to \infty$. $(\alpha \notin \mathbb{N})$.

• Application to the asymptotics of moments.

Soit
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$
, alors $\frac{[t^n]h_k}{[t^n]h_0} = \mathbf{E}[(Q_n(I))_k]$
 $(m)_k := m(m-1)\dots(m-k+1)$

 \rightarrow to perform the asymptotics of moments it is enough to know the dominant singularity of h_k for all $k \ge 0$.

 \rightarrow from an algebraic equation for H(1), I can do this automatically (in principle) for any fixed k.

• The trick – the real good thing in this work :)

Every algebraic series is D-finite (solution of a linear DE with polynomial coeffs) Our series, seen in the variable s, and even (s - 1), is algebraic over algebraic over $\mathbb{Q}(t)$ Therefore it is D-finite: its coefficients, the h_k , satisfy a polynomial recurrence relation!

Fix an algebraic series h(t, s).

Let
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$

Our series, seen in the variable s, and even (s-1), is algebraic over $\mathbb{Q}(t)$

Therefore it is D-finite: its coefficients, the h_k , satisfy a polynomial recurrence relation!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t,k)h_{k-d}(t)$$

 $Rat_d = explicit rational function in k$ (algebraic in t)

Fix an algebraic series h(t, s).

Let
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$

Our series, seen in the variable s, and even (s-1), is algebraic over $\mathbb{Q}(t)$

Therefore it is D-finite: its coefficients, the h_k , satisfy a polynomial recurrence relation!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t, k)h_{k-d}(t)$$

$$Rat_d = \text{explicit rational function in } k$$
(algebraic in t)

Under reasonable hypotheses, one can determine the dominant singularity of h_k easily by induction on k!!!

Fix an algebraic series h(t, s).

Let
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$

Our series, seen in the variable s, and even (s-1), is algebraic over $\mathbb{Q}(t)$

Therefore it is D-finite: its coefficients, the h_k , satisfy a polynomial recurrence relation!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t, k)h_{k-d}(t)$$

$$Rat_d = \text{explicit rational function in } k$$
(algebraic in t)

Under reasonable hypotheses, one can determine the dominant singularity of h_k easily by induction on k!!!

In our case we show by induction:

$$h_k(t) \sim c_k(1 - t/(27/256))^{1 - \frac{3}{4}k}$$

where $c_k = \frac{\sqrt{6}(3k-4)(3k-8)}{96}c_{k-2}$. The recurrence relation is immediately solved and leads to the theorem in the first slide! $\mathbf{E}[Z^k] = \frac{\sqrt{3}\cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k+\frac{1}{3})\Gamma(\frac{1}{4}k+\frac{2}{3})}{\Gamma(\frac{1}{4}k+\frac{1}{3})}$.

Fix an algebraic series h(t, s).

Let
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$

Our series, seen in the variable s, and even (s-1), is algebraic over $\mathbb{Q}(t)$

Therefore it is D-finite: its coefficients, the h_k , satisfy a polynomial recurrence relation!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t, k)h_{k-d}(t)$$

$$Rat_d = \text{explicit rational function in } k$$
(algebraic in t)

Under reasonable hypotheses, one can determine the dominant singularity of h_k easily by induction on k!!!

In our case we show by induction:

$$h_k(t) \sim c_k(1 - t/(27/256))^{1 - \frac{3}{4}k}$$

where $c_k = \frac{\sqrt{6}(3k-4)(3k-8)}{96}c_{k-2}$. The recurrence relation is immediately solved and leads to the theorem in the first slide! $\mathbf{E}[Z^k] = \frac{\sqrt{3}\cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k+\frac{1}{3})\Gamma(\frac{1}{4}k+\frac{2}{3})}{\Gamma(\frac{1}{4}k+\frac{1}{2})}$.

Exercise: show without thinking (but with a computer) in a few lines of Maple, that the height of a random point on a random Dyck path scales in order \sqrt{n} and converges to a Rayleigh law.

Fix an algebraic series h(t, s).

Let
$$h_k = \left(\frac{\partial}{\partial s}\right)^k h(t,s)\Big|_{s=1}$$

Our series, seen in the variable s, and even (s-1), is algebraic over $\mathbb{Q}(t)$

Therefore it is D-finite: its coefficients, the h_k , satisfy a polynomial recurrence relation!

$$h_k(t) = \sum_{d=1}^{L} Rat_d(t, k)h_{k-d}(t)$$

$$Rat_d = \text{explicit rational function in } k$$
(algebraic in t)

Under reasonable hypotheses, one can determine the dominant singularity of h_k easily by induction on k!!!

In our case we show by induction:

$$h_k(t) \sim c_k(1 - t/(27/256))^{1 - \frac{3}{4}k}$$

if not already known, this trick is the most interesting thing in my paper

where $c_k = \frac{\sqrt{6}(3k-4)(3k-8)}{96}c_{k-2}$. The recurrence relation is immediately solved and leads to the theorem in the first slide! $\mathbf{E}[Z^k] = \frac{\sqrt{3}\cdot 2^{-\frac{k}{4}-1}}{\sqrt{\pi}} \frac{\Gamma(\frac{1}{4}k+\frac{1}{3})\Gamma(\frac{1}{4}k+\frac{2}{3})}{\Gamma(\frac{1}{4}k+\frac{1}{3})}$.

Exercise: show without thinking (but with a computer) in a few lines of Maple, that the height of a random point on a random Dyck path scales in order \sqrt{n} and converges to a Rayleigh law.

A few words on the lower path

● → for the lower path, we need to know if the maked point comes before or after the first contact, otherwise we can't follow its height!

zero on lower path

A few words on the lower path

Tamari interval of size n+1

• • \rightarrow for the lower path, we need to know if the maked point comes before or after the first contact, otherwise we can't follow its height!

 \rightarrow we need two catalytic variables (!!!)

$$G(x,y) \equiv G(t,x,y,w) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} \sum_{i=0}^{2n} w^{P(i)} x^{\operatorname{contact}_{< i}(P)} y^{\operatorname{contact}_{\ge i}(P)}$$

A few words on the lower path

• \rightarrow for the lower path, we need to know if the maked point comes before or after the first contact, otherwise we can't follow its height!

zero on lower path

 \rightarrow we need two catalytic variables (!!!)

$$G(x,y) \equiv G(t,x,y,w) := \sum_{n \ge 0} t^n \sum_{(P,Q) \in \mathcal{I}_n} \sum_{i=0}^{2n} w^{P(i)} x^{\operatorname{contact}_{$$

$$\begin{split} G(x,y) &= F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y) \\ &+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y) \end{split}$$

 \rightarrow Appear: G(x, y), G(1, y), G(1, 1)... but not G(x, 1).

$$\begin{split} G(x,y) &= F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y) \\ &+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y). \end{split}$$

 \rightarrow Appear: G(x, y), G(1, y), G(1, 1)... but not G(x, 1).

 \rightarrow this is not-so-hard-to-solve!

 \dots see the equation as a catalytic equation in x where y is a parameter...

... once solved (only the kernel method here), we only have an equation with one catalytic variable (y). Et voilà!

$$\begin{split} G(x,y) &= F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y) \\ &+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y). \end{split}$$

 \rightarrow Appear: G(x, y), G(1, y), G(1, 1)... but not G(x, 1).

 \rightarrow this is not-so-hard-to-solve!

 \dots see the equation as a catalytic equation in x where y is a parameter...

... once solved (only the kernel method here), we only have an equation with one catalytic variable (y). Et voilà!

 \rightarrow This method of successive elimination has been used since (independently, and much more generally) by Bousquet-Mélou and Notarantonio.

$$\begin{split} G(x,y) &= F(y) + txw \frac{G(1,y) - G(1,1)}{y-1} F(y) + tx \frac{F(y) - yF(1)}{y-1} F(y) \\ &+ t \frac{x^2}{y} \frac{G(x,y) - \frac{y}{x} F(x) - G(1,y) + yF(1)}{x-1} F(y) + tx \frac{F(x) - F(1)}{x-1} G(x,y). \end{split}$$

 \rightarrow Appear: G(x, y), G(1, y), G(1, 1)... but not G(x, 1).

 \rightarrow this is not-so-hard-to-solve!

 \dots see the equation as a catalytic equation in x where y is a parameter...

... once solved (only the kernel method here), we only have an equation with one catalytic variable (y). Et voilà!

 \rightarrow This method of successive elimination has been used since (independently, and much more generally) by Bousquet-Mélou and Notarantonio.

 \rightarrow For the asymptotic, the "D-finite trick" again works!

Conclusion

• Contat-Curien + Bertoin-Curien-Riera (paper out since, book still to come) can do the full scaling limit of the path, but I'm not sure they can get the explicit limit law for a random point.

Conclusion

• Contat-Curien + Bertoin-Curien-Riera (paper out since, book still to come) can do the full scaling limit of the path, but I'm not sure they can get the explicit limit law for a random point.

• Their work probably implies that this limit law is universal for "trees described by positive non-linear Bousquet-Mélou–Jehanne-type equation" (i.e. the ones for which they have the universal scaling limit)

Conclusion

• Contat-Curien + Bertoin-Curien-Riera (paper out since, book still to come) can do the full scaling limit of the path, but I'm not sure they can get the explicit limit law for a random point.

• Their work probably implies that this limit law is universal for "trees described by positive non-linear Bousquet-Mélou–Jehanne-type equation" (i.e. the ones for which they have the universal scaling limit)

• I'd like to have more applications of my D-finite trick!

Thanks!