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Dyck paths and Tamari partial order - (parenthesis)

• Graph with Cat(n) vertices

• The mixing time of the simple random walk is unknown! (conjecture
O(n3/2) Aldous 1990’s, impressive partial results by Eppstein+Frishberg)

• The diameter is 2n− o(n) [Sleator-Thurston-Tarjan, Pournin], mysterious
connections with hyperbolic geometry!
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• ... this is pretty. This is also the number of plane 3-connected
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• This is only the beginning of rich analogies between Tamari intervals and maps...
see the works of [Fang] and collaborators. And also [MBM-GC-LFPR]
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Random Tamari intervals (?)

• Theorem [C’24]. Let (Pn, Qn) be a random Tamari interval chosen uniformly in In.
Let I ∈ [0, 2n] be a uniformly chosen abscissa. Then:

Qn(I)

n3/4
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[[MBM + Éric Fusy + LFPR]]

Tamari Interval of size n + 1
Tamari Interval with a marked
zero on lower path
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[[MBM + Éric Fusy + LFPR]]

Tamari Interval of size n + 1
Tamari Interval with a marked
zero on lower path

Tamari Interval

total size n

• Polynomial equation with one catalytic variable. Effective theory from
Bousquet-Mélou–Jehanne, the solution is algebraic and explicit → Chapoton’s theorem
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If we know F (x) (and we do) this is nothing but a (linear!) one-variable catalytic equation for H.

This is solved ”illico” with the kernel method!
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−→ This result contains in principle the whole distribution of the random variable
Qn(I).... But how to deduce the wanted asymptotic?!?

h(t, s) :=
∑

n≥0 t
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∑

(P,Q)∈In

∑2n
i=0 s

Q(i).
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then [tn]f(t) ∼ cΓ(−α)n−α−1ρ−n when n→∞. (α 6∈ N).
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Therefore it is D-finite: its coefficients, the hk, satisfy a polynomial recurrence
relation!
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... see the equation as a catalytic equation in x where y is a parameter...
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→ this is not-so-hard-to-solve!

... see the equation as a catalytic equation in x where y is a parameter...

... once solved (only the kernel method here), we only have an equation with one
catalytic variable (y). Et voilà!

→ This method of successive elimination has been used since (independently, and much
more generally) by Bousquet-Mélou and Notarantonio.

→ For the asymptotic, the ”D-finite trick” again works!
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• Contat-Curien + Bertoin-Curien-Riera (paper out since, book still to come) can do
the full scaling limit of the path, but I’m not sure they can get the explicit limit law
for a random point.

• Their work probably implies that this limit law is universal for ”trees described by
positive non-linear Bousquet-Mélou–Jehanne-type equation” (i.e. the ones for which
they have the universal scaling limit)

• I’d like to have more applications of my D-finite trick!



Thanks!


