Loszta's asymptotic algebra in type An Nathan Chapelier-Laget Joint with Jérémie Guilhat Eloise Little

- The Hecke algebra is the algebra H over R with basis $\{T_w \mid w \in W\}$ and relations $T_w T_s = \begin{cases} T_{ws} & \text{if } l(ws) > l(w) \\ T_{ws} \neq (q - q') T_w & \text{if } l(ws) < l(w) \end{cases}$

- "Bar modution"
$$\overline{q} = q^{-1}$$
 on R extends to H
 $\overline{Z a u T u} = \overline{Z a u T u^{-1}}$

Theorem (Kazhdan, Lusztig, 79) There exists a onique
basis (Cw) well of H such that

$$C_w = C_w$$

 $C_w = T_w + \sum_{v < w} P_{v,w}(q^i) T_v$
where $P_{v,w}(q^i) \in q^i \mathbb{Z}[q^i]$.
(Cw) well is the KL-basis
 $P_{v,w}(q^i)$ are the KL-polynomials.

Type Az Simplified mult. table CxCy = Ehxyz Cz						
x	e	S	ts	Ł	st	st s
е	е	S	ts	£	st	sts
S	S	S	s, sts		st	sts
st	st	s, sts	s, sts	st.	st,sts	sts
t	ц	ts	ts	لې	t,sts	sts
ts	ts	ts	ts, sts	t, sts	t, sts	sts
sts	sts	sts	sts	sts	sts	sts

Left Kazhdan-Luszhig cells						
xy	e	S	ts	Ł	st	sts
е	е	S	ts	Ł	st	sts
S	S	S	s, sts	st	st	sts
st	st	s, sts	s, sts	st	st,sts	sts
t	ŧ	ts	ts	£_	t,sts	sts
ts	ts	ts	ts, sts	t, sts	t, sts	sts
sts	sts	sts	sts	sts	sts	sts

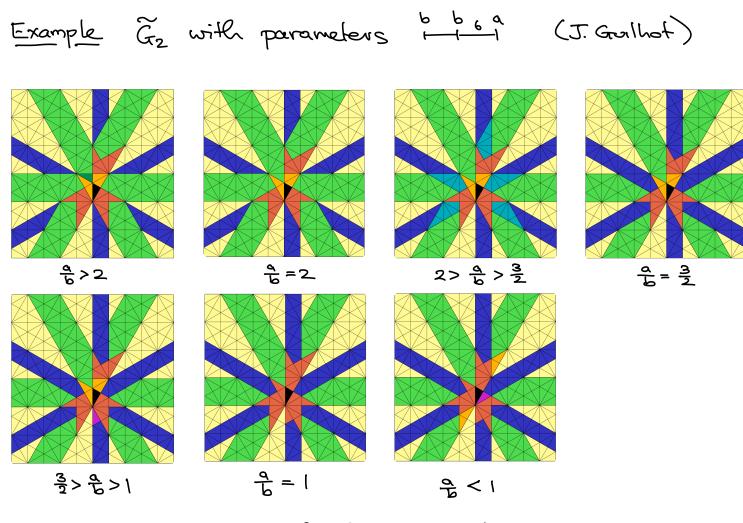
r a left œll → Irl-dim rep of H.

Left cells

	×y	e	S	ts	Ł	st	sts	
	е	e	s	ts	Ł	st	sts	
	S	s	S	s, sts	at a	st	sts	
cells	st	st	s, sts	s, sts	st	st,sts	sts	
Right	t	Ł	ts	ts	ť_	t,sts	sts	
К	ts	ts	ts	ts, sts	t, sts	t,sts	sts	
	sts	sts	sts	sts	sts	sts	sts	
		e		s,t	s,t,stits			

Two sided cells

Remark: There is a generalisation of KL-theau to "unequal parameters." In this case the theory is less developed - the geometric interpretations of "equal parameter "case not available ...



We now return to the A2 example.

 $g(st) = \max\{o, 1\} = 1$

xy	e	s	ts	Ł	st	st s
е	o e	o S	o ts	ب ٥	o st	o sts
S	o S	l S	<mark>ہ ہ</mark> s, sts	ليہ <mark>م</mark>	st	sts
st	o st	o o s, sts	ر ا s, sts		o ∖ st,sts	2 sts
t	o t	o ts	। ts	- ل+	oo t,sts	। sts
ts	o ts	ts	۰ ، ts, sts	o o t, sts	۱۱ t,sts	2 sts
sts	o sts	sts	2 sts	۱ sts	2 sts	3 sts

Lusztig's a-function:

xy	e	S	ts	Ł	st	sts
е	o e	o S	o ts	0 T	o st	o sts
S	o S	l S	o o s, sts	ليہ م ال	st	l sts
st	o st	o o s, sts	s, sts		o (st,sts	2 sts
t	0 1	o ts	۱ ts	لہ –	oo t,sts	। sts
ts	o ts	1 ts	۰ ، ts, sts	o o t, sts	۱۱ t,sts	2 sts
sts	o sts	۱ sts	2 sts	۱ sts	2 sts	3 sts

<u>a(e)=0</u> <u>a(s)=a(t)=a(st)=a(ts)=1</u> <u>a(sts)=3</u> Fact: <u>a</u>-function is constant on two-sided cells

Define
$$\forall_{x,y,z''} \in \mathbb{Z}$$
 (possibly zero) by:
 $h_{x,y,z} = q^{a(2)} \forall_{x,y,z''} + lower degree$
Losztig's asymptotic algebra is \mathbb{Z} -algebra
 $H^{\infty} = \mathbb{Z}$ -span $\{ \forall_w \mid w \in W \}$
with multiplication
 $\mathcal{I}_x \mathcal{I}_y = \sum \forall_{x,y,z''} \forall_z$
It is a deep fact that H^{∞} is an associative algebra,
making use of geometric interpretations of KL-theory

xy	ζ _e	\mathcal{T}_{s}	$\hat{\mathcal{L}}_{ts}$	T _L	T_{st}	T _{sts}
τ _e	te	0	0	0	0	0
ζ _s	0	τ_{s}	0	0	τ_{st}	0
\mathcal{I}_{st}	0	0	Ŋ	τ_{st}	0	0
τ_{t}	0	0	T_{ts}	\mathcal{T}_{t}	0	0
T_{ts}	O	\mathcal{T}_{ts}	0	Q	\mathcal{T}_{t}	0
\mathcal{T}_{sts}	0	Ö	Ю	0	0	τ_{sts}

 $H^{\infty} \simeq \mathbb{Z} \oplus Mat_{2,2}(\mathbb{Z}) \oplus \mathbb{Z}$

The asymptotic algebra in type
$$\overline{A}_{n}$$

 \cdot Shi and Lusztig: Λ_{ii}
 $\{t_{200}-sided cells\}^{bij}$ (partitions of ntl? $\stackrel{bij}{\longrightarrow}$ (unipotent conj.)
 $\Delta_{\lambda} \leftarrow \lambda \rightarrow u_{\lambda}$ (closees $GL_{ntl}(C)$)
 $\Delta_{\lambda} \leftarrow \lambda \rightarrow u_{\lambda}$ (Jordan)
Theorem (Xi 2002) For $\lambda = (\lambda_{1}, \lambda_{2}, ...) \in \Lambda_{2}$,
 $H_{\lambda}^{\infty} \simeq Mat_{N_{\lambda}, N_{\lambda}} (Rep(F_{\lambda})) (N_{\lambda} = \frac{(ntl)!}{2^{1/2}_{\lambda}!...})$
where $F_{\lambda} = maximal reductive subgroup of the
centraliser $C(u_{\lambda})$ in $GL_{ntl}(C)$.$

In our approach: - Rep(Fx) aruses continuaterially via Schur functions - The fundamental 2-alcove is central to the technique - and H[∞] is constructed combinationally using 7-folded alcare porths (an analogue of Ram's alcove porths and hittelmann tath Model). - Regurned information on cells / KL-theory is minimised (we obtain new description of cells in type 'An).

We fix a natural basis, making
$$T_{\lambda}$$
 a mature representation
 $T_{\lambda}(T_{w}) \in Mat_{N_{\lambda},N_{\lambda}}(REZ_{\lambda}])$

Killing property

Theorem (Killing property)

$$T_{\lambda}(C_{w}) = 0$$
 whenever w is in a lawer
 $T_{\lambda}(C_{w}) = 0$ or incomparible cell to Δ_{λ}

Boundedness Property
Write deg
$$\pi_{\lambda}(T_{w})$$
 for maximal degree (in q.)
of matrix entries of $\pi_{\lambda}(T_{w})$
Theorem (Bandedness) For $\lambda \in \Lambda$ we have
 $deg \pi_{\lambda}(T_{w}) \leq l(w_{\lambda'})$ $\forall w \in W$

Consequence We define leading matrices

$$C_{\lambda}(w) = q^{-l(w_{\lambda'})} \pi_{\lambda}(\pi_{w}) |_{q^{-1}=0}$$

Hence $C_{\lambda}(W) \in Mat_{N_{\lambda},N_{\lambda}}(\mathbb{Z}[\mathbb{Z}_{\lambda}])$

Our representations recognise two-sided cells:
Theorem (Recognising cells) For
$$\Im \in \Lambda$$
 we have
 $\Lambda_{\chi} = \{ w \in W \mid deg \pi_{\chi}(\pi_w) = l(w_{\chi}) \}$

The direction

$$deg \pi_{\lambda}(\pi_{w}) = l(w_{\lambda}) \implies w \in \Delta_{\lambda}$$

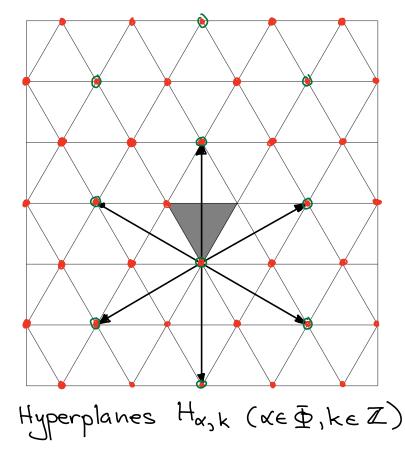
is relatively straight forward
The reverse implication is more subtle...
(... asymptotic Planchenel formula)

Realising the asymptotic algebra
A consequence of the above is:
Theorem (Representation of
$$H^{\infty}_{\lambda}$$
) For $\lambda \in \Lambda$ we have
 $H^{\infty}_{\lambda} \simeq \langle c_{\lambda}(\omega) | \omega \in \Lambda_{\lambda} \rangle_{Z}$, $T_{\omega} \mapsto c_{\lambda}(\omega)$

Thus
$$H_{\lambda}^{\infty}$$
 is realised as a subalgebra of
 $Mat_{N_{\lambda},N_{\lambda}}(\mathbb{Z}[\mathbb{Z}_{\lambda}])$
We must now explicitly compute the leading matrices...

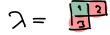
Determining the leading matrices

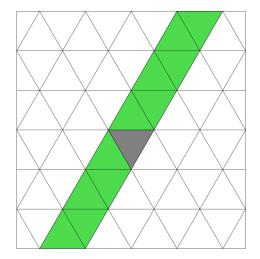
- · Q coroot lattice
- · P coweight lattice · Wo² Sn+, Weyl gp · W = PXWo extended



 $\overline{\Phi}_{2^{\star}}$ For REA let $\mathcal{A}_{\lambda} = \{ x \in \mathbb{R}^{n} \mid 0 \leq \langle x, \alpha \rangle \leq 1 \quad \forall \alpha \in \overline{\Phi}_{\lambda}^{+} \}$ the "findamental A-alcove".

Example Ã2

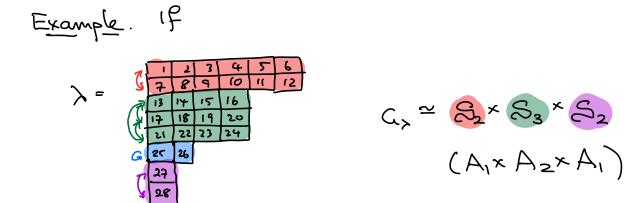




Example 1	$\dot{\lambda}_{3}$		
У	Lower walls	Upper walls	A
1234	Hai,o, Hazio, Hazio	Η α(+ α2+ α3, 1	Ao (single)
4	$H_{\alpha_{1}, \circ}, H_{\alpha_{2}, \circ}$	$H_{\alpha_1+\alpha_2,l}$	"tobes"
1 2 3 4	$H_{\alpha_{1,0}}, H_{\alpha_{3,0}}$	$H_{\alpha_{1},1}$ $H_{\alpha_{3},1}$	
(2 3 4	$H_{\alpha_{1},0}$	$H_{\kappa_{i},i}$	"layer"
1 2 7 4	ø	¢	\mathbb{R}^3

Symmetries and weights of A.

Let Gy= {we Wo | wAy= Ay}

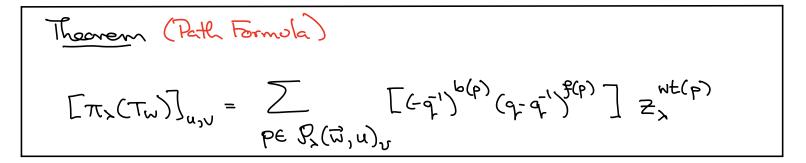


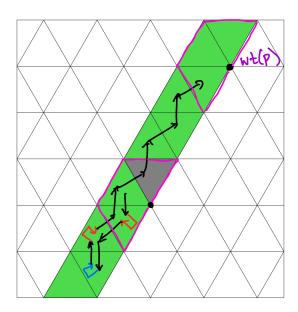
Let
$$Q_{\lambda} = \mathbb{Z} - \text{span } \Phi_{\lambda}$$

 $T_{\lambda} = P/Q_{\lambda}$
 $G_{\lambda} \text{ acts on } T_{\lambda}.$
 $T_{\lambda}^{+} = \text{"dominant } \lambda - \text{weights"}$
 $\mathbb{R}[Z_{\lambda}] = \mathbb{R}[T_{\lambda}]$

 $\begin{array}{cccc} & & & \\ \hline & & \\ \hline & \\ \hline \end{array} \end{array} \begin{array}{cccc} G_{\lambda} = \{e^{2}\} & \text{ and } & & \\ T_{\lambda} = \langle t_{1}, t_{2} \mid 2t_{1} + t_{2} = 0 \rangle \approx \mathbb{Z} \end{array} \end{array}$

Combinatorial formula for TI, (Tw)





Calculating Cx(W)

Let
$$\Gamma_{\lambda} = \text{left cell of } \Delta_{\lambda} \text{ containing } W_{\lambda'}$$

Then $\Gamma_{\lambda} \cap \Gamma_{\lambda}^{-1} = \{m_{\lambda} \mid \lambda \in T_{\lambda}^{+}\}.$

Theorem (Leading matrices) For & ET,⁺

$$c_{\lambda}(m_{\chi}) = s_{\chi}(z_{\lambda}) E_{1,1}$$

where $s_{\chi}(z_{\lambda}) \in \mathbb{Z}[z_{\lambda}]^{G_{\lambda}}$ is a G_{λ} -Schur Function
The proof consists of 3 main parts
(1) λ -folded above paths \rightarrow find a single non-connelling
path of correct degree (weight
(2) G_{λ} -invariance \leftarrow λ -relative Satale isomorphism
(3) Determining Schur function \leftarrow Asymptotic Plancherel Familia

It is now a small step to conclude:

 $\Gamma \simeq \operatorname{Rep}(F_{\lambda})$ Theorem (Xi's Theorem) $H_{\lambda}^{\infty} \simeq \operatorname{Mat}_{N_{\lambda}, N_{\lambda}} \left(\mathbb{Z} [\overline{z}_{\lambda}]^{G_{\lambda}} \right)$