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Plan of the talk

The Gaussian β-ensemble and semicircle distribution

LLN for random β-partitions at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized γ-free convolution
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Gaussian Unitary Ensemble

The prob. measure on WN :� ta1 ¥ � � � ¥ aNu � RN with density

EigenNpa1, . . . , aNq9
¹

1¤i j¤N

pai � ajq2
N¹

k�1

e�
1
2
a2k .

determines a random N-tuple of reals:

a1 ¥ � � � ¥ aN .

This N-tuple is distributed like eigenvalues of the N � N complex
Hermitian random matrix:

AN � MN �M�
N

2
, MN � rmij sN1 , mij � N p0, 1q � i �N p0, 1q.

We call Eigen
p2q
N the Gaussian Unitary Ensemble (GUE).
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Law of Large Numbers for GUE
Consider the (random) empirical measures

µN :� 1

N

Ņ

i�1

δ ai?
N

, where a1 ¥ � � � ¥ aN is Eigen
p2q
N -distributed.

Theorem (Wigner '55)

The empirical measures µN converge weakly, in probability, to the

semicircle distribution, with density

sptq :� 1t�2¤t¤2u �
?
4� t2

2π
.
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Moment method and multivariate Bessel functions
The typical proof of Wigner's theorem uses the moment method
and reduces to �nding the limits

lim
NÑ8

1

Nk�1
� E

�
Tr
�
A2k
N

�� � lim
NÑ8

»
R
x2kµNpdxq, for all k ¥ 1.

New ideas, due to [Bufetov�Gorin '15], employ the
multivariate Bessel functions

Bpa1,...,aNqpx1, . . . , xNq :� 1! �2! � � � pN�1q! �
det

�
eaixj

�N
i ,j�1±

i jpxi � xjqpai � ajq ,

s.t. Bpa1,...,aNqp0Nq�1, and are diagonalized by di�erential operators

Pk :� 1±
i jpxi � xjq �

Ņ

i�1

Bk
Bxki

�
¹
i j

pxi � xjq, k ¥ 1,

namely,

Pk

�
Bpa1,...,aNqpx1, . . . , xNq

	
�

Ņ

i�1

pai qk � Bpa1,...,aNqpx1, . . . , xNq.
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Bessel generating functions

Main idea is to associate EigenNpa1, . . . , aNq ÞÑ FNpx1, . . . , xNq,
to GUE its Bessel generating function (a Fourier-type transform):

FNpx1, . . . , xNq :�
»
Bpa1,...,aNqpx1, . . . , xNqEigenNpa1, . . . , aNqda1 . . . daN .

The moments of empirical measures are exactly the �Taylor coe�s�,

i.e. �rst apply Pk , and then �nd the constant term
��
x1�����xN�0

:

PkFN

���
x1�����xN�0

� EµN

�
Ņ

i�1

pai qk
�
.

Upshot: The moments of µN can be accessed without matrices!

The di�culty now is to study limits of Pk , applied to the BGF

FNpx1, . . . , xNq
�
which BTW equals � epx

2
1�����x2Nq{2

�
, then

set all xi � 0, and take the limit, as N Ñ8.
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Dunkl operators

A new approach was started by [Benaych-Georges�C.�Gorin '22],

who used instead the Dunkl di�erential-di�erence operators

ζi :� B
Bxi �

¸
j : j�i

1

xi � xj
p1� si ,jq,

rPk :� pζ1qk � � � � � pζNqk , k ¥ 1.

They also satisfy the equality

rPk

�
Bpa1,...,aNqpx1, . . . , xNq

	
�

Ņ

i�1

pai qk � Bpa1,...,aNqpx1, . . . , xNq

but also admit a �βββ-generalization� � � �
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Gaussian Beta Ensemble

For general βββ ¥ 0, we study the random N-tuples a1 ¥ � � � ¥ aN

determined by the Gaussian βββ-ensemble (GβββE):

Eigen
pβββq
N pa1, � � � , aNq9

¹
1¤i j¤N

|ai � aj |βββ
N¹

k�1

e�
1
2
a2k

Motivations:

1. For βββ � 1& 4, it's the eigenvalue density of Gaussian Orthogonal
Ensemble (GOE)&Gaussian Symplectic Ensemble (GSE).

2. Eigen
pβββq
N is a Boltzmann distribution with logarithmic repulsion

and the parameter βββ plays the role of inverse temperature.

3. Retains some integrability for all βββ ¥ 0, e.g. normalization
constant can be calculated from the Selberg integral.
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Bessel generating functions
The relevant multivariate Bessel functions B

pβββq
pa1,...,aNq

px1, . . . , xNq
are now abstract and de�ned by the βββ-Dunkl operators

ζ
pβββq
i :� B

Bxi �
βββ

2
�
¸

j : j�i

1

xi � xj
p1� si ,jq,

Ppβββq
k :� �

ζ
pβββq
1

�k � � � � � �
ζ
pβββq
N

�k
, k ¥ 1,

and eigenfunction relations

Ppβββq
k

�
B
pβββq
pa1,...,aNq

px1, . . . , xNq
	
�

Ņ

i�1

pai qk � Bpβββq
pa1,...,aNq

px1, . . . , xNq

The relevant Fourier transform is now

F
pβββq
N px1, . . . , xNq :�

»
B
pβββq
pa1,...,aNq

px1, . . . , xNqEigenpβββqN pa1, . . . , aNqda1 . . . daN ,

and still satis�es: Ppβββq
k F

pβββq
N

���
x1�����xN�0

� EµN

�
Ņ

i�1

aki

�
.

10/31



Bessel generating functions
The relevant multivariate Bessel functions B

pβββq
pa1,...,aNq

px1, . . . , xNq
are now abstract and de�ned by the βββ-Dunkl operators

ζ
pβββq
i :� B

Bxi �
βββ

2
�
¸

j : j�i

1

xi � xj
p1� si ,jq,

Ppβββq
k :� �

ζ
pβββq
1

�k � � � � � �
ζ
pβββq
N

�k
, k ¥ 1,

and eigenfunction relations

Ppβββq
k

�
B
pβββq
pa1,...,aNq

px1, . . . , xNq
	
�

Ņ
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LLN for GβββE eigenvalues at �xed temperature

Nothing changes if βββ ¡ 0 is �xed: as N Ñ8, then

µN :� 1

N

Ņ

i�1

δ ai?
N

, where a1 ¥ � � � ¥ aN is Eigen
pβq
N -distributed,

converge weakly, in probability, to a semicircle distribution.

In the extreme βββ �0 case, the interaction
±

i j |ai � aj |βββ vanishes,
and we get Gaussian distribution as the limit of empirical measures.

Given γ P p0,8q, we were interested in the crossover
high temperature regime:

N Ñ8, βββ Ñ 0�,
Nβββ

2
Ñ γ,

hoping: when γ Ñ8, get semicircle distribution;
when γ Ñ 0�, get Gaussian distribution.
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LLN for GβββE eigenvalues at �xed temperature

Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22)

Consider the empirical measures

µN,βββ :� 1

N

Ņ

i�1

δai , where a1 ¥ � � � ¥ aN is Eigen
pβββq
N -distributed.

In the limit: N Ñ8, β Ñ 0�,
Nβ

2
Ñ γ P p0,8q,

the measures µN,βββ converge weakly, in probability, to certain

probability measure µpγq.

The density of µpγq is complicated, but explicit, and contained in
[Allez�Bouchaud�Guionnet '12].
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Global asymptotics of GβββE eigenvalues at high temp

Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22)

Consider the empirical measures

µN,βββ :� 1

N

Ņ

i�1

δai , where a1 ¥ � � � ¥ aN is Eigen
pβββq
N -distributed.

In the limit: N Ñ8, β Ñ 0�,
Nβ

2
Ñ γ P p0,8q,

we have µN,βββ Ñ µpγq weakly, in probability.

Density of µpγq for various γ (courtesy of [Allez�Bouchaud�Guionnet '12]) 13/31



Moments of the limiting measure µpγq

As a result of the moment method, we got new moment formulas:

Theorem (Benaych-Georges � Cuenca � Gorin '22)

The limiting measure µpγq is uniquely determined by its moments:» 8

�8
xkµpγqpdxq �

¸
Dyck paths Γ of length k

weightpΓq,

where: weightpΓq :�
¹
j¥1

pj � γq#down steps from height j .

p1�γq3, p1�γq2p2�γq, p1�γq2p2�γq, p1�γqp2�γq2, p1�γqp2�γqp3�γq
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Plan of the talk

The Gaussian β-ensemble and semicircle distribution

LLN for random β-partitions at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized γ-free convolution
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Discrete Beta Ensembles

Now study discrete random partitions. There are many de�nitions.

We are motivated by the discrete βββ-ensembles, due to

[Borodin�Gorin�Guionnet '17], on WN,Z :� tpλ1¥ � � �¥λNqPZNu:


 the parameter θ � βββ

2
is more natural;


 the shifted coordinates ℓi :� λi � pi � 1qθ are more natural,

so that ℓ1 ¡ � � � ¡ ℓN ;


 they considered probability measures

PN

�
ℓ1 ¡ � � � ¡ ℓN

�9 ¹
1¤i j¤N

Γpℓi � ℓj � 1qΓpℓi � ℓj � θq
Γpℓi � ℓjqΓpℓi � ℓj � 1� θq

N¹
k�1

wpℓk ;Nq.


 Among other things, they proved the LLN for µN � 1
N

°N
i�1 δℓi .
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Discrete Dyson Brownian Motion
Another motivation was [Gorin�Shkolnikov '15], who de�ned a
continuous-time, discrete-space, one-parameter θ-dependent
(growing) Markov chain�

ℓ1ptq ¡ � � � ¡ ℓNptq
�
, t ¥ 0,

that should be regarded as the discrete Dyson Brownian motion.

Initial condition: λp0q � p0, 0, . . . , 0q, or ℓi p0q � �pi � 1qθ. 17/31



Discrete Dyson Brownian Motion

Another motivation was [Gorin-Shkolnikov '15], who de�ned a
continuous-time, discrete-space, one-parameter θ-dependent
(growing) Markov chain�

ℓ1ptq ¡ � � � ¡ ℓNptq
�
, t ¥ 0,

that should be regarded as the discrete Dyson Brownian motion:


 [discreteÑ continuous space limit] gives Dyson Brownian motion;


 it is a random evolution of N non-intersecting particles
(not a Doob h-transform, unless θ � 1);


 if started at λp0q � p0, � � � , 0q, equivalently ℓi p0q � �pi � 1qθ,
then at time t, you get the discrete β-ensemble with

wpx ;Nq � tx

Γpx � pN � 1qθ � 1q , x ¥ 0.
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Jack generating functions

More generally, we consider measures with nice (analytic near 1N)
Jack generating functions

F
pθq
PN
px1, . . . , xNq :�

¸
λ

PNpλq
J
pθq
λ px1, . . . , xNq

J
pθq
λ p1Nq

,

where J
pθq
λ px1, . . . , xNq are Jack symmetric polynomials, de�ned by�

ξk1�� � ��ξkN
�
J
pθq
λ px1, . . . , xNq �

Ņ

i�1

pℓi qk �Jpθqλ px1, . . . , xNq, k ¥ 1,

where the Cherednik operators ξ1, . . . , ξN are

ξi :� θp1�iq�xi
B
Bxi �θ

i�1̧

j�1

xi
xi � xj

p1�si ,jq�θ
Ņ

j�i�1

xj
xi � xj

p1�si ,jq.

A variation was used for LLN/CLT of models at �xed temperature,
by [Huang '20]. For high temperature, we proved � � �
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Law of Large Numbers for random θ-partitions

Theorem [C.�Doª¦ga '25].
Let tPNuN¥1 be measures on partitions λ1 ¥ � � � ¥ λN , with
empirical measures µN :� 1

N

°N
i�1 δℓi , and ℓi :� λi � θpi � 1q.

Assume that the JGF's
 
F
pθq
N px1, . . . , xNq

(
N¥1

satisfy:


 lim
NÑ8
NθÑγ

1

pℓ� 1q!
Bℓ
Bxℓ1

F
pθq
N

���
x1�����xN�0

� κℓ, for all ℓ ¥ 1.


 lim
NÑ8
NθÑγ

Br
Bxi1 � � � Bxir

F
pθq
N

���
x1�����xN�0

� 0, for all mixed derivatives.

Then there is a prob. measure µpγq with �nite moments m1,m2, . . .

s.t. lim
NÑ8

µN � µpγq in the sense of moments, in probability.
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Law of Large Numbers for random θ-partitions
Theorem [C.�Doª¦ga '25]. LLN for empirical measures if


 lim
NÑ8
NθÑγ

1

pℓ� 1q!
Bℓ
Bxℓ1

F
pθq
N

���
x1�����xN�0

� κℓ, for all ℓ ¥ 1.


 lim
NÑ8
NθÑγ

Br
Bxi1 � � � Bxir

F
pθq
N

���
x1�����xN�0

� 0, for all mixed derivatives.

Example: Fixed-time t distribution of GS process: κℓ � δℓ,1 � t
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Moment problem
Recall that for �xed-time distribution of GS process, started

from λp0q � p0, 0, � � � , 0q, we have µNptq Ñ µ
pγ,tq
Planch.

Theorem [C.�Doª¦ga '25]. The prob. measure µ
pγ,tq
Planch is uniquely

determined by its moments: for t � γ, and all ℓ ¥ 1:»
R
xℓµ

pγ,γq
Planchpdxq �

¸
ΓPMotzkinpℓq

γ#up steps�#hor steps at height 0

1�#hor steps at height 0

�
¹
j¥1

pj � γq#hor steps at height j �#down steps from height j .

Note that: weightpΓq �±
ePEpΓq f peq !

γp1�γq3, γ2p2�γqp1�γq, 1

2
γ2p1�γq2, 1

5
γ4, � � �
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Inverse transform problem

Recall that for �xed-time distribution of GS process, started

from λp0q � p0, 0, � � � , 0q, we have µNptq Ñ µ
pγ,tq
Planch.

Theorem [C.�Doª¦ga '25]. As formal power series in z�1:¸
n¥0

γÒnp�tqn
zÒnn!

� exp

�
γ � rL"»

R
e�xaµ

pγ,tq
Planchpdaq�

eγx � 1

γx

*
pzq



p�q

where zÒn :� zpz � 1q � � � pz � n � 1q, and rL is the formal LT:

rL" ¸
n¥0

sn
n!
xn
*
pzq :�

¸
n¥0

snz
�n�1.
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Jacobi operators
LHS of (*) is the characteristic function of certain Jacobi operator

J pγ,tq
Planch �

�����
a1pγ, tq b1pγ, tq 0 � � �
b1pγ, tq a2pγ, tq b2pγ, tq

0 b2pγ, tq a3pγ, tq
...

. . .

����� ,

i.e. zeroes of the LHS of (*) � eigenvalues of J pγ,tq
Planch.

The exact description of µ
pγ,tq
Planch in terms of eigenvalues of J pγ,tq

Planch

will be discussed in a future paper (ongoing work with Doªega).

Depiction of the support of µ
pγ,tq
Planch. 27/31
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Discrete DBM with arbitrary initial condition

Assume that we perform the Markov evolution of Gorin�Shkolnikov
for arbitrary initial conditions

ℓpNqp0q :�
�
ℓ
pNq
1 p0q ¡ ℓ

pNq
2 p0q ¡ � � � ¡ ℓ

pNq
N p0q

	
,

that satisfy
1

N

Ņ

i�1

δ
ℓ
pNq
i p0q

NÑ8ÝÝÝÝÑ ν.

Theorem [C.�Doª¦ga '25]. Let ℓpNqptq � �
ℓ
pNq
1 ptq¡ . . .¡ℓ

pNq
N ptq� be

the Markov chain at time t ¡ 0. There exists a prob. measure µ s.t.

lim
NÑ8
NθÑγ

1

N

Ņ

i�1

δ
ℓ
pNq
i ptq

� µ.

Moreover, µ is uniquely determined by its moments, or equivalently:

κ
pγq
n rµs � κ

pγq
n rνs � κ

pγq
n

�
µ
pγ,tq
Planch

�
, for all n ¥ 1.
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Quantized γ-free convolution

Question

Given two probability measures µ, ν with �nite κ
pγq
n rµs, κpγqn rνs,

does there exist a third probability measure µ`pγq ν, such that

κ
pγq
n

�
µ`pγq ν

� � κ
pγq
n rµs � κ

pγq
n rνs, for all n ¥ 1?

Our theorem answers a�rmatively when µ � µ
pγ,tq
Planch, and ν is of

the form ν � limNÑ8
1
N

°N
i�1 δℓpNqi p0q

.

Conjecture

The answer to the question is always YES.

The question is related to the conjecture of [Stanley '89] on the
integrality/positivity of Littlewood-Richardson coe�s of Jack polys.

1-parameter γ-generalization of the (quantized) free convolution?
([Voiculescu '92], [Speicher '94], [Bufetov�Gorin '15]).
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Thank you for your attention!
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