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Plan of the talk

The Gaussian S-ensemble and semicircle distribution
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Gaussian Unitary Ensemble

The prob. measure on Wy := {a; = --- > an} € RV with density

N
. _1.2
Eigenp(a1,...,an) o« H (a;—aj)21_[e 2% |
k=1

determines a random N-tuple of reals:
ap =--- 2 ap.
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Gaussian Unitary Ensemble

The prob. measure on Wy := {a; = --- > an} € RV with density

N
. _1.2
Eigenp(a1,...,an) o« H (a;—aj)21_[e 2% |
k=1

determines a random N-tuple of reals:
ap =--- 2 ap.

This N-tuple is distributed like eigenvalues of the N x N complex
Hermitian random matrix:

_ My + /b4;3

5 . My =[my]¥, my=N(0,1) +i-N(0,1).

An

We call Eigen(,\?) the Gaussian Unitary Ensemble (GUE).
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Law of Large Numbers for GUE

Consider the (random) empirical measures

1

N
Wy = Z 0a , whereay =--->apis Eigenﬁ)—distributed.
~ N
i=1

=|

Theorem (Wigner '55)

The empirical measures 1y converge weakly, in probability, to the
semicircle distribution, with density

o—toeteo siesese sdeed o o 2 —5
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Moment method and multivariate Bessel functions

The typical proof of Wigner's theorem uses the moment method
and reduces to finding the limits

N—oo N—oo

. 1 :
lim T -]E[Tr(A%Vk)] = lim JszkuN(dx), for all k > 1.
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Moment method and multivariate Bessel functions

The typical proof of Wigner's theorem uses the moment method
and reduces to finding the limits

N—oo

1 2] = g 2k
I\Ill—rpoo T [Tr(AN )] = lim JRX pn(dx), forall k >1

New ideas, due to [Bufetov—Gorin '15], employ the
multivariate Bessel functions
N
ajx
det [e J]i’j:]_

Bloy....an)(Xts .oy xy) i= 1120 (N = 1)1 ’
( 1s:eey N)( 1 N) ( ) Hi<j(X,' —Xj)(al- _ aj)

st. Bay,...an )(ON) =1, and are diagonalized by differential operators
Pi = H xi—xj), k=1,
ni<J / ’<J
namely,

N
Pu <B(al,...,aN)(X17 . 7XN)) = Z (3% Blag.an) (X1, - -, XN)-

i=1
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Bessel generating functions

Main idea is to associate Eigeny(a1,...,an) — Fy(x1,. .., xn),
to GUE its Bessel generating function (a Fourier-type transform):

Fn(xi, ..., xn) 3213(31,...,51,\,)()(17 ...,xn)Eigeny(a1,...,an)da; .. .dapy.
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Bessel generating functions

Main idea is to associate Eigeny(a1,...,an) — Fy(x1,. .., xn),
to GUE its Bessel generating function (a Fourier-type transform):

Fn(xi, ..., xn) 3215(31,...,51,\,)()(17 ...,xn)Eigeny(a1,...,an)da; .. .dapy.

The moments of empirical measures are exactly the “Taylor coeffs”,
i.e. first apply Pk, and then find the constant term Lq:

N
g = mxy =0 = Euy [Z (ai)k] .

i=1

.n:XN:&

PrFn
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Bessel generating functions

Main idea is to associate Eigeny(a1,...,an) — Fy(x1,. .., xn),
to GUE its Bessel generating function (a Fourier-type transform):

Fn(xi, ..., xn) 3215(31,...,51,\,)()(17 ...,xn)Eigeny(a1,...,an)da; .. .dapy.

The moments of empirical measures are exactly the “Taylor coeffs”,
i.e. first apply Pk, and then find the constant term Lq:

N
g = B [Z (a,-)k] :

i=1

.n:XN:&

PrFn

Upshot: The moments of uy can be accessed without matrices!

The difficulty now is to study limits of Py, applied to the BGF
Fn(xt, .-, xn) (which BTW equals = e(d++x7)/2 ) then
set all x; = 0, and take the limit, as N — c.
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Dunkl operators

A new approach was started by [Benaych-Georges—C.—Gorin '22],
who used instead the Dunkl differential-difference operators

1
Gi: 6+

o

JrJ#i
Pei= () +-+ ()" k=1
They also satisfy the equality

P Blassean (1500 ) = D5 (@) - By (1, 30)

but also admit a “B-generalization” - - -
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Gaussian Beta Ensemble

For general B = 0, we study the random N-tuples a; > --- > ay
determined by the Gaussian -ensemble (GBE):

N
Eigeng\‘?)(al,--- , aN)oC H lai — aj|ﬂ H e 2%
k=1

1<i<j<N
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Gaussian Beta Ensemble

For general B = 0, we study the random N-tuples a; > --- > ay
determined by the Gaussian -ensemble (GBE):

N
Eigen%s)(al,--- , aN)oC H lai — aj|ﬂ H e 2%
k=1

1<i<j<N

Motivations:
1. For B = 1 &4, it's the eigenvalue density of Gaussian Orthogonal
Ensemble (GOE) & Gaussian Symplectic Ensemble (GSE).

2. Eigen%g) is a Boltzmann distribution with logarithmic repulsion

and the parameter B plays the role of inverse temperature.

3. Retains some integrability for all 8 > 0, e.g. normalization
constant can be calculated from the Selberg integral.

9/31



Bessel generating functions
The relevant multivariate Bessel functions (o

-----

are now abstract and defined by the B-Dunkl operators

C,('B) = i + é . Z L (1 - si,j)a

OX; 2 Xj — Xj

and eigenfunction relations

N
(6) (g8 _ k. g®
PE(BE) b om)) = D @) - BE |, a..

..,XN)

7XN)
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Bessel generating functions
The relevant multivariate Bessel functions (o

77777

are now abstract and defined by the B-Dunkl operators

2
LR s B S

OX; 2 Xj — Xj

and eigenfunction relations
N
p® (ngwam(xl, . ,XN)) =Y @)* - BP | Gane )
i=1
The relevant Fourier transform is now

FISIB)(Xl,...,XN)ZZ B('B) (xl,...,xN)Eigen(,g)(al,...,aN)dal ...daN,

(81,.“,3[\[)

x1=---=xy=0

and still satisfies: P,Eﬂ)F,E,ﬂ) =E,, [Z af‘] .
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LLN for GBE eigenvalues at fixed temperature
Nothing changes if 8 > 0 is fixed: as N — o0, then
N
1
I = ;5\%, where a1 = --- > ap is Eigens\f)—distributed,
converge weakly, in probability, to a semicircle distribution.
|a; — a;|# vanishes,

In the extreme 8 =0 case, the interaction H,-<J-

and we get Gaussian distribution as the limit of empirical measures.
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LLN for GBE eigenvalues at fixed temperature
Nothing changes if 8 > 0 is fixed: as N — o0, then
N
1
I = ;5\%, where a1 = --- > ap is Eigeng\?)—distributed,
converge weakly, in probability, to a semicircle distribution.

In the extreme 8 =0 case, the interaction [],_;[a;j — aj|# vanishes,
and we get Gaussian distribution as the limit of empirical measures.

Given ~y € (0,0), we were interested in the crossover
high temperature regime:

N
N — 0, ﬁ - O+7 7ﬂ -7
hoping: when 7 — 0, get semicircle distribution;

when v — 07, get Gaussian distribution.
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LLN for GBE eigenvalues at fixed temperature

Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22)

Consider the empirical measures

N
1
UNB = N Z 0a, Wherea; = --->apn is Eigens\‘,s)—distributed.

i=1
N
In the limit: N — o, B —07, 7ﬁ — v € (0,00),

the measures iy g converge weakly, in probability, to certain
probability measure ;1(7).

The density of u(?) is complicated, but explicit, and contained in
[Allez—Bouchaud-Guionnet "12].
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Global asymptotics of GBE eigenvalues at high temp
Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22)

Consider the empirical measures

N
1
UNB = N Z 05, Wherea; > --- > ay is Eigens\‘,g)—distributed.

i=1
N
In the limit: N — o, B —07, 7B — v € (0,00),

we have uy g — 1) weakly, in probability.

. T 2 2 ] ] G

Density of 1(7) for various ~ (courtesy of [Allez—Bouchaud—Guionnet '12]) 13/31



Moments of the limiting measure ;{7
As a result of the moment method, we got new moment formulas:
Theorem (Benaych-Georges — Cuenca — Gorin '22)
The limiting measure ") is uniquely determined by its moments:
Q0
f kM (dx) = 2 weight(I'),
- Dyck paths T of length k

where: Weight(r) = H (J + ,y)#down steps from heightj_

j=1

/\
/\ /\ /\N/\ /\
INININ, ING N, NI\, \, / \

(1+7)%, (14+9)%2+y), (1+9)2(2+7), @+ 2+7)2 (1+7)(2+7)(3+7)
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Plan of the talk

LLN for random (-partitions at high temperature
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Discrete Beta Ensembles

Now study discrete random partitions. There are many definitions.
We are motivated by the discrete S-ensembles, due to
[Borodin—Gorin—Guionnet '17], on Wiz := {(\1 = ---=An)eZN}:
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Discrete Beta Ensembles

Now study discrete random partitions. There are many definitions.
We are motivated by the discrete S-ensembles, due to
[Borodin—Gorin—Guionnet '17], on Wiz := {(\1 = ---=An)eZN}:

B

e the parameter |0 = 5 is more natural;

e the shifted coordinates

b= —(i— 1)0‘ are more natural,

so that 41 > --- > fp;

o they considered probability measures

M6 — €+ 1T (0 — €+ 6) >
PN(£1>--->EN)OC H wak,
1<i<j<N P — )Tl =4 +1-0) (5

e Among other things, they proved the LLN for uy = %Z,N:l dy;.-
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Discrete Dyson Brownian Motion
Another motivation was [Gorin—Shkolnikov '15], who defined a
continuous-time, discrete-space, one-parameter f-dependent
(growing) Markov chain
(6> - > tn(D). t>0,
that should be regarded as the discrete Dyson Brownian motion.

50 A

40 A

30 A

20 A

10 4

04

-50 0 50 100 150

Initial condition: A(0) = (0,0,...,0), or £;(0) = —(i — 1)6. 17/31



Discrete Dyson Brownian Motion

Another motivation was [Gorin-Shkolnikov '15], who defined a
continuous-time, discrete-space, one-parameter #-dependent
(growing) Markov chain

((1(t) > -+« > Un(t)), t=0,

that should be regarded as the discrete Dyson Brownian motion:

e [discrete — continuous space limit] gives Dyson Brownian motion;
e it is a random evolution of N non-intersecting particles
(not a Doob h-transform, unless § = 1);
o if started at A(0) = (0,---,0), equivalently ¢;(0) = —(i — 1)6,
then at time t, you get the discrete 3-ensemble with

tX

woil) = TN DT )

x = 0.
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Jack generating functions

More generally, we consider measures with nice (analytic near 1V)
Jack generating functions

FO( )= Bn(N) A0,

P X17 e )XN = N 0 )

" X K

where J/(\G) (x1,...,xn) are Jack symmetric polynomials, defined by

N
()P0, o) = S 0w, k=1
i=1

where the Cherednik operators &;,...,&y are
i—1

?
i = 0= +xi 7 +92 5 (1—sij)+0 2

j=i+1 Xi—X

1 S,’J').
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Jack generating functions

More generally, we consider measures with nice (analytic near 1V)

Jack generating functions

FO 0, o) = EPN(A)J@(’{;)’“"X’V),
X Jy (1)
where J/(\e) (x1,...,xn) are Jack symmetric polynomials, defined by
(el I 0, xw) = i I, o), k=1,
where the Cherednik operators 511,:.1. ., &y are
& :0(1_I)+X'8i, —I—HIZfXI (1—sij)+0 Z 1 Sij)-

j=i+1 Xi—X

A variation was used for LLN/CLT of models at fixed temperature,

by [Huang '20]. For high temperature, we proved - - -
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Law of Large Numbers for random 6-partitions

Theorem [C.—Dotega '25].

Let {Pyn}n=1 be measures on partitions A\; > --- = Ay, with
empirical measures py 1= %Z,N:l d¢;, and £ = X\ +0(i — 1).
Assume that the JGF's {F,(Ve)(xl, o XN) § s Satisfy:

1 o ()

e lim — = Ky, forall £ > 1.
N—ao (£ —1)! é’xf N =y =0 -
NO—~
' )
e |im F = 0, for all mixed derivatives.
N—oo aX,'1 e &’x,-, x1=+=xy=0
NO—~

Then there is a prob. measure 1(?) with finite moments my, mo, . ..

s.t. A}im un = 7 [ in the sense of moments, in probability.
—00
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Law of Large Numbers for random 6-partitions
Theorem [C.—Dotega '25]. LLN for empirical measures if

o o)
lim —————F = Ky, forall ¢ > 1.
I L e
r
e |im F(e) = 0, for all mixed derivatives.
Xl:...:XN:O

N-—c0 6x,-1 T 8x,-,
NO—~

Example: Fixed-time t distribution of GS process:

150
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Law of Large Numbers for random 6-partitions
Theorem [C.—Dotega '25]. LLN for empirical measures if
O Lo

e |im —
o | "N
/\\/0*)(2 (¢ —-1)! 0xq

= Ky, forall £ > 1.
x1=+=xy=0

e lm —0 __F®

= 0, for all mixed derivatives.
N-—c0 6x,-1 T 8x,-,
NO—~

x1=---=xy=0

Example: Fixed-time distribution of GS process:

300

250

200

150

100 ]

50 |
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Law of Large Numbers for random 6-partitions
Theorem [C.—Dotega '25]. LLN for empirical measures if

o o)
[i —F = Ky, forall £ > 1.
A T e
o" ) : .
e lim ———Fy = 0, for all mixed derivatives.
N—o0 6x,-1 ce 6x,-, x1=+=xy=0

NO—~

Example: Fixed-time distribution of GS process:

150 550 -
M !I:I_l_

=60, 0= 1/(2N) (v =1/2).
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Plan of the talk

The limiting measure: moment problem and Jacobi operators
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Moment problem

Recall that for fixed-time distribution of GS process, started

from \(0) = (0,0,---,0), we have up(t) — uéﬁ?ch

Theorem [C.—Dotega '25]. The prob. measure uélan)ch is uniquely

determined by its moments: for t = ~, and all £ > 1:

(1) _
J X MPIanch(dX) = Z
R reMotzkin()
. H(J + 7)#hor steps at height j + #down steps from height j

,y#up steps + #hor steps at height 0

1 + #hor steps at height 0

=1

Note that: weight(I") # [ Teeg(r) f(e)!

1 1
Y(1+7)3,  A2+7)(1+), 572(1+v)27 “q4,

25/31



Inverse transform problem

Recall that for fixed-time distribution of GS process, started
from A(0) = (0,0,---,0), we have uy(t) — ugk;?ch

Theorem [C —Dotega '25]. As formal power series in z71:

Tn n - X _ 1
i (7:1)
= ex -L Jﬁ e da }- z :) *
’;) Tnnl p(’)/ { R /lPlanch( ) X ( ) ( )
where 21" := z2(z4+1)---(z+ n—1), and £ is the formal LT:

E{Zi’; "} =Y sz "L

n=0 n=0
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Jacobi operators
LHS of (*) is the characteristic function of certain Jacobi operator

a1 (7? t) bl (77 t) 0

bi(v,t) ax(v,t) ba(v,t)
(vt) _|*
TPianch = 0 bo(y,t) asz(y,t) ’
i.e. zeroes of the LHS of (*) ~ eigenvalues of Jég’:zh

(7:1)

The exact description of uplanch in terms of eigenvalues of jplanch
will be discussed in a future paper (ongoing work with Dotega).

300 -

250 -+

R S PR e o
(v.t)

Depiction of the support of pp] - 21731



Plan of the talk

Quantized ~-free convolution
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Discrete DBM with arbitrary initial condition

Assume that we perform the Markov evolution of Gorin—Shkolnikov
for arbitrary initial conditions

{0y := (A" (0) > 4V (0) > - > ((0)),

that satisfy

N 2 S (N) N—)OO

29/31



Discrete DBM with arbitrary initial condition

Assume that we perform the Markov evolution of Gorin—Shkolnikov
for arbitrary initial conditions

{0y := (A" (0) > 4V (0) > - > ((0)),

that satisfy

N 2 S (N) N—)OO

Theorem [C.-Dotega '25]. Let ¢(N)(t) = (ESN)(t)>...>£SVN)(t)) be
the Markov chain at time t > 0. There exists a prob. measure p s.t.

lim 0,
N—oo Z Z( )
NO—~ i=1

Moreover, p is uniquely determined by its moments, or equivalently:

5] = 6510 + w5 ] for all n > 1
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Quantized ~-free convolution

Question

Given two probability measures 11, v with finite k5[], k5[],
does there exist a third probability measure u@EH") v, such that

kOB V] = k1] + £5[0], for all n > 17

(7:1)

Planch’ and v is of

Our theorem answers afﬁrmatwely when = p

the form v = limy_ o & W Zi:l M 0y
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Quantized ~-free convolution

Question

Given two probability measures 11, v with finite k5[], k5[],
does there exist a third probability measure u@EH") v, such that

kOB V] = k1] + £5[0], for all n > 17

(7:1)

Our theorem answers afflrmatlvely when p = MPIanch’ and v is of

the form v = limy_ o & W Zi:l M 0y

Conjecture J

The answer to the question is always YES.

The question is related to the conjecture of [Stanley "89] on the
integrality /positivity of Littlewood-Richardson coeffs of Jack polys.

1-parameter ~y-generalization of the (quantized) free convolution?
([Voiculescu '92], [Speicher '94], [Bufetov—Gorin "15]).
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Thank you for your attention!
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