# Random partitions at high temperature

### Cesar Cuenca

The Ohio State University

June 11, 2025 @ cortipom25: closing conference of the Cortipom ANR project

Based on joint works with Maciej Dołęga, and a joint paper with Florent Benaych-Georges and Vadim Gorin. The Gaussian  $\beta$ -ensemble and semicircle distribution

LLN for random  $\beta$ -partitions at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized  $\gamma$ -free convolution

# Plan of the talk

#### The Gaussian $\beta$ -ensemble and semicircle distribution

LLN for random  $\beta$ -partitions at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized  $\gamma$ -free convolution

# Gaussian Unitary Ensemble

The prob. measure on  $\overline{\mathcal{W}_N} := \{a_1 \geqslant \cdots \geqslant a_N\} \subseteq \mathbb{R}^N$  with density

$$\mathsf{Eigen}_{N}(a_{1},\ldots,a_{N}) \propto \prod_{1 \leq i < j \leq N} (a_{i} - a_{j})^{2} \prod_{k=1}^{N} e^{-\frac{1}{2}a_{k}^{2}}.$$

determines a random *N*-tuple of reals:

 $a_1 \geq \cdots \geq a_N.$ 

# Gaussian Unitary Ensemble

The prob. measure on  $\overline{\mathcal{W}_N} := \{a_1 \geqslant \cdots \geqslant a_N\} \subseteq \mathbb{R}^N$  with density

$$\mathsf{Eigen}_{N}(a_{1},\ldots,a_{N}) \propto \prod_{1 \leq i < j \leq N} (a_{i}-a_{j})^{2} \prod_{k=1}^{N} e^{-\frac{1}{2}a_{k}^{2}}.$$

determines a random *N*-tuple of reals:

 $a_1 \geq \cdots \geq a_N.$ 

This N-tuple is distributed like eigenvalues of the  $N \times N$  complex Hermitian random matrix:

$$A_N = \frac{M_N + M_N^*}{2}, \quad M_N = [m_{ij}]_1^N, \quad m_{ij} = \mathcal{N}(0, 1) + i \cdot \mathcal{N}(0, 1).$$

We call Eigen $_{N}^{(2)}$  the Gaussian Unitary Ensemble (GUE).

# Law of Large Numbers for GUE

Consider the (random) empirical measures

$$\mu_N := rac{1}{N} \sum_{i=1}^N \delta_{rac{a_i}{\sqrt{N}}}$$
, where  $a_1 \geqslant \cdots \geqslant a_N$  is Eigen<sup>(2)</sup>-distributed.

#### Theorem (Wigner '55)

The empirical measures  $\mu_N$  converge weakly, in probability, to the semicircle distribution, with density



# Moment method and multivariate Bessel functions

The typical proof of Wigner's theorem uses the moment method and reduces to finding the limits

$$\lim_{N\to\infty}\frac{1}{N^{k+1}}\cdot\mathbb{E}\Big[\mathsf{Tr}\big(A_N^{2k}\big)\Big]=\lim_{N\to\infty}\int_{\mathbb{R}}x^{2k}\mu_N(\mathsf{d} x),\quad\text{for all }k\geqslant 1.$$

### Moment method and multivariate Bessel functions

The typical proof of Wigner's theorem uses the moment method and reduces to finding the limits

$$\lim_{N\to\infty}\frac{1}{N^{k+1}}\cdot\mathbb{E}\Big[\mathsf{Tr}\big(A_N^{2k}\big)\Big]=\lim_{N\to\infty}\int_{\mathbb{R}}x^{2k}\mu_N(\mathsf{d} x),\quad\text{for all }k\geqslant 1.$$

New ideas, due to [Bufetov-Gorin '15], employ the multivariate Bessel functions

$$B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N) := 1! \cdot 2! \cdots (N-1)! \cdot \frac{\det \left[e^{a_i x_j}\right]_{i,j=1}^N}{\prod_{i< j} (x_i - x_j)(a_i - a_j)},$$

s.t.  $B_{(a_1,...,a_N)}(0^N) = 1$ , and are diagonalized by differential operators

$$\mathcal{P}_k := \frac{1}{\prod_{i < j} (x_i - x_j)} \circ \sum_{i=1}^N \frac{\partial^k}{\partial x_i^k} \circ \prod_{i < j} (x_i - x_j), \quad k \ge 1.$$

namely,

$$\mathcal{P}_k\Big(B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N)\Big)=\sum_{i=1}^N(a_i)^k\cdot B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N).$$

Main idea is to associate Eigen<sub>N</sub> $(a_1, \ldots, a_N) \mapsto F_N(x_1, \ldots, x_N)$ , to GUE its Bessel generating function (a Fourier-type transform):

$$F_N(x_1,\ldots,x_N) := \int B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N) \operatorname{Eigen}_N(a_1,\ldots,a_N) da_1 \ldots da_N.$$

Main idea is to associate Eigen<sub>N</sub> $(a_1, \ldots, a_N) \mapsto F_N(x_1, \ldots, x_N)$ , to GUE its Bessel generating function (a Fourier-type transform):

$$F_N(x_1,\ldots,x_N) := \int B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N) \operatorname{Eigen}_N(a_1,\ldots,a_N) da_1 \ldots da_N.$$

The moments of empirical measures are exactly the "Taylor coeffs", i.e. first apply  $\mathcal{P}_k$ , and then find the constant term  $\Big|_{x_1=\dots=x_N=0}$ :  $\mathcal{P}_k F_N \Big|_{x_1=\dots=x_N=0} = \mathbb{E}_{\mu_N} \left[ \sum_{i=1}^N (a_i)^k \right].$ 

Main idea is to associate Eigen<sub>N</sub> $(a_1, \ldots, a_N) \mapsto F_N(x_1, \ldots, x_N)$ , to GUE its Bessel generating function (a Fourier-type transform):

$$F_N(x_1,\ldots,x_N) := \int B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N) \operatorname{Eigen}_N(a_1,\ldots,a_N) da_1 \ldots da_N.$$

The moments of empirical measures are exactly the "Taylor coeffs", i.e. first apply  $\mathcal{P}_k$ , and then find the constant term  $\Big|_{x_1=\dots=x_N=0}$ :  $\mathcal{P}_k F_N \Big|_{x_1=\dots=x_N=0} = \mathbb{E}_{\mu_N} \left[ \sum_{i=1}^N (a_i)^k \right].$ 

**Upshot:** The moments of  $\mu_N$  can be accessed without matrices! The difficulty now is to study limits of  $\mathcal{P}_k$ , applied to the BGF  $F_N(x_1, \ldots, x_N)$  (which BTW equals  $= e^{(x_1^2 + \cdots + x_N^2)/2}$ ), then set all  $x_i = 0$ , and take the limit, as  $N \to \infty$ .

### Dunkl operators

A new approach was started by [Benaych-Georges-C.-Gorin '22], who used instead the Dunkl differential-difference operators

$$\zeta_i := \frac{\partial}{\partial x_i} + \sum_{j: \ j \neq i} \frac{1}{x_i - x_j} (1 - s_{i,j}),$$
$$\widetilde{P}_k := (\zeta_1)^k + \dots + (\zeta_N)^k, \quad k \ge 1.$$

$$\mathcal{P}_k := (\zeta_1)^{\kappa} + \dots + (\zeta_N)^{\kappa}, \quad k \ge$$

They also satisfy the equality

$$\widetilde{\mathcal{P}}_k\Big(B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N)\Big) = \sum_{i=1}^N (a_i)^k \cdot B_{(a_1,\ldots,a_N)}(x_1,\ldots,x_N)$$
  
but also admit a " $\beta$ -generalization"  $\cdots$ 

# Gaussian Beta Ensemble

For general  $\beta \ge 0$ , we study the random *N*-tuples  $a_1 \ge \cdots \ge a_N$  determined by the Gaussian  $\beta$ -ensemble (G $\beta$ E):

$$\mathsf{Eigen}_N^{(\boldsymbol{\beta})}(\boldsymbol{a}_1,\cdots,\boldsymbol{a}_N) \propto \prod_{1 \leqslant i < j \leqslant N} |\boldsymbol{a}_i - \boldsymbol{a}_j|^{\boldsymbol{\beta}} \prod_{k=1}^N e^{-\frac{1}{2} \boldsymbol{a}_k^2}$$

# Gaussian Beta Ensemble

For general  $\beta \ge 0$ , we study the random *N*-tuples  $a_1 \ge \cdots \ge a_N$  determined by the Gaussian  $\beta$ -ensemble (G $\beta$ E):

$$\mathsf{Eigen}_{N}^{(\boldsymbol{\beta})}(\boldsymbol{a}_{1},\cdots,\boldsymbol{a}_{N}) \propto \prod_{1 \leq i < j \leq N} |\boldsymbol{a}_{i} - \boldsymbol{a}_{j}|^{\boldsymbol{\beta}} \prod_{k=1}^{N} e^{-\frac{1}{2}\boldsymbol{a}_{k}^{2}}$$

#### Motivations:

1. For  $\beta = 1 \& 4$ , it's the eigenvalue density of Gaussian Orthogonal Ensemble (GOE) & Gaussian Symplectic Ensemble (GSE).

2. Eigen<sub>N</sub><sup>( $\beta$ )</sup> is a Boltzmann distribution with logarithmic repulsion and the parameter  $\beta$  plays the role of inverse temperature.

3. Retains some integrability for all  $\beta \ge 0$ , e.g. normalization constant can be calculated from the Selberg integral.

The relevant multivariate Bessel functions  $B_{(a_1,\ldots,a_N)}^{(\beta)}(x_1,\ldots,x_N)$ are now abstract and defined by the  $\beta$ -Dunkl operators

$$\begin{split} \zeta_i^{(\boldsymbol{\beta})} &:= \frac{\partial}{\partial x_i} + \frac{\boldsymbol{\beta}}{2} \cdot \sum_{j: j \neq i} \frac{1}{x_i - x_j} (1 - s_{i,j}), \\ \mathcal{P}_k^{(\boldsymbol{\beta})} &:= \left(\zeta_1^{(\boldsymbol{\beta})}\right)^k + \dots + \left(\zeta_N^{(\boldsymbol{\beta})}\right)^k, \quad k \ge 1, \end{split}$$

and eigenfunction relations

$$\mathcal{P}_{k}^{(\beta)}\left(B_{(a_{1},\ldots,a_{N})}^{(\beta)}(x_{1},\ldots,x_{N})\right) = \sum_{i=1}^{N} (a_{i})^{k} \cdot B_{(a_{1},\ldots,a_{N})}^{(\beta)}(x_{1},\ldots,x_{N})$$

The relevant multivariate Bessel functions  $B_{(a_1,\ldots,a_N)}^{(\beta)}(x_1,\ldots,x_N)$ are now abstract and defined by the  $\beta$ -Dunkl operators

$$\begin{split} \zeta_i^{(\boldsymbol{\beta})} &:= \frac{\partial}{\partial x_i} + \frac{\boldsymbol{\beta}}{2} \cdot \sum_{j: \ j \neq i} \frac{1}{x_i - x_j} (1 - s_{i,j}), \\ \mathcal{P}_k^{(\boldsymbol{\beta})} &:= \left(\zeta_1^{(\boldsymbol{\beta})}\right)^k + \dots + \left(\zeta_N^{(\boldsymbol{\beta})}\right)^k, \quad k \ge 1, \end{split}$$

and eigenfunction relations

$$\mathcal{P}_{k}^{(\beta)}\left(B_{(a_{1},\ldots,a_{N})}^{(\beta)}(x_{1},\ldots,x_{N})\right) = \sum_{i=1}^{N} (a_{i})^{k} \cdot B_{(a_{1},\ldots,a_{N})}^{(\beta)}(x_{1},\ldots,x_{N})$$

The relevant Fourier transform is now

$$\begin{split} \hline F_{N}^{(\boldsymbol{\beta})}(x_{1},\ldots,x_{N}) &:= \int B_{(a_{1},\ldots,a_{N})}^{(\boldsymbol{\beta})}(x_{1},\ldots,x_{N}) \operatorname{Eigen}_{N}^{(\boldsymbol{\beta})}(a_{1},\ldots,a_{N}) da_{1}\ldots da_{N}, \\ \text{and still satisfies:} \qquad \mathcal{P}_{k}^{(\boldsymbol{\beta})} F_{N}^{(\boldsymbol{\beta})}\Big|_{x_{1}=\cdots=x_{N}=0} &= \mathbb{E}_{\mu_{N}} \left[ \sum_{i=1}^{N} a_{i}^{k} \right]. \end{split}$$

# LLN for $G\beta E$ eigenvalues at fixed temperature

Nothing changes if  $\beta > 0$  is fixed: as  $N \to \infty$ , then

$$\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{\frac{a_i}{\sqrt{N}}}, \text{ where } a_1 \geqslant \cdots \geqslant a_N \text{ is Eigen}_N^{(\beta)} \text{-distributed},$$

converge weakly, in probability, to a semicircle distribution.

In the extreme  $\beta = 0$  case, the interaction  $\prod_{i < j} |a_i - a_j|^{\beta}$  vanishes, and we get Gaussian distribution as the limit of empirical measures.

# LLN for $G\beta E$ eigenvalues at fixed temperature

Nothing changes if  $\beta > 0$  is fixed: as  $N \to \infty$ , then

$$\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{\frac{a_i}{\sqrt{N}}}, \text{ where } a_1 \geqslant \cdots \geqslant a_N \text{ is Eigen}_N^{(\beta)} \text{-distributed},$$

converge weakly, in probability, to a semicircle distribution.

In the extreme  $\beta = 0$  case, the interaction  $\prod_{i < j} |a_i - a_j|^{\beta}$  vanishes, and we get Gaussian distribution as the limit of empirical measures.

Given  $\gamma \in (0, \infty)$ , we were interested in the crossover high temperature regime:

$$N \to \infty, \quad \beta \to 0^+, \quad \frac{N\beta}{2} \to \gamma,$$

hoping: when  $\gamma \to \infty$ , get semicircle distribution; when  $\gamma \to 0^+$ , get Gaussian distribution. LLN for  $G\beta E$  eigenvalues at fixed temperature

Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22) Consider the empirical measures

$$\begin{split} \mu_{N,\beta} &:= \frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i}}, \ \text{where } a_{1} \geqslant \cdots \geqslant a_{N} \text{ is } \text{Eigen}_{N}^{(\beta)} \text{-distributed.} \\ \text{In the limit:} \quad N \to \infty, \quad \beta \to 0^{+}, \quad \frac{N\beta}{2} \to \gamma \in (0,\infty), \\ \text{the measures } \mu_{N,\beta} \text{ converge weakly, in probability, to certain} \\ \text{probability measure } \mu^{(\gamma)}. \end{split}$$

The density of  $\mu^{(\gamma)}$  is complicated, but explicit, and contained in [Allez–Bouchaud–Guionnet '12].

Global asymptotics of  $G\beta E$  eigenvalues at high temp Theorem (Duy, Shirai '15 & Benaych-Georges, C, Gorin '22) Consider the empirical measures

$$\begin{split} \mu_{N,\boldsymbol{\beta}} &:= \frac{1}{N} \sum_{i=1}^{N} \delta_{a_{i}}, \ \text{where } a_{1} \geq \cdots \geq a_{N} \text{ is } \operatorname{Eigen}_{N}^{(\boldsymbol{\beta})} \text{-distributed.} \\ \text{In the limit:} \quad N \to \infty, \quad \boldsymbol{\beta} \to 0^{+}, \quad \frac{N\boldsymbol{\beta}}{2} \to \gamma \in (0,\infty), \\ \text{we have } \mu_{N,\boldsymbol{\beta}} \to \mu^{(\gamma)} \text{ weakly, in probability.} \end{split}$$



# Moments of the limiting measure $\mu^{(\gamma)}$

As a result of the moment method, we got new moment formulas:

Theorem (Benaych-Georges – Cuenca – Gorin '22)

The limiting measure  $\mu^{(\gamma)}$  is uniquely determined by its moments:

$$\int_{-\infty}^{\infty} x^k \mu^{(\gamma)}(dx) = \sum_{Dyck \text{ paths } \Gamma \text{ of length } k} weight(\Gamma),$$

where: weight(
$$\Gamma$$
) :=  $\prod_{j \ge 1} (j + \gamma)^{\# down \ steps \ from \ height \ j}$ .



 $(1+\gamma)^3, \ (1+\gamma)^2(2+\gamma), \ (1+\gamma)^2(2+\gamma), \ (1+\gamma)(2+\gamma)^2, \ (1+\gamma)(2+\gamma)(3+\gamma)$ 

# Plan of the talk

The Gaussian  $\beta$ -ensemble and semicircle distribution

#### LLN for random $\beta\text{-partitions}$ at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized  $\gamma$ -free convolution

### Discrete Beta Ensembles

Now study discrete random partitions. There are many definitions. We are motivated by the **discrete**  $\beta$ -ensembles, due to [Borodin-Gorin-Guionnet '17], on  $\overline{\mathcal{W}_{N,\mathbb{Z}}} := \{(\lambda_1 \ge \cdots \ge \lambda_N) \in \mathbb{Z}^N\}$ :

### Discrete Beta Ensembles

Now study discrete random partitions. There are many definitions. We are motivated by the **discrete**  $\beta$ -ensembles, due to [Borodin-Gorin-Guionnet '17], on  $\overline{\mathcal{W}_{N,\mathbb{Z}}} := \{(\lambda_1 \ge \cdots \ge \lambda_N) \in \mathbb{Z}^N\}$ :

• the parameter 
$$\left| \theta = \frac{\beta}{2} \right|$$
 is more natural;

- the shifted coordinates  $\lfloor \ell_i := \lambda_i (i-1)\theta \rfloor$  are more natural, so that  $\ell_1 > \cdots > \ell_N$ ;
- they considered probability measures

$$\mathbb{P}_{N}(\ell_{1} > \cdots > \ell_{N}) \propto \prod_{1 \leq i < j \leq N} \frac{\Gamma(\ell_{i} - \ell_{j} + 1)\Gamma(\ell_{i} - \ell_{j} + \theta)}{\Gamma(\ell_{i} - \ell_{j})\Gamma(\ell_{i} - \ell_{j} + 1 - \theta)} \prod_{k=1}^{N} w(\ell_{k}; N).$$

• Among other things, they proved the LLN for  $\mu_N = \frac{1}{N} \sum_{i=1}^N \delta_{\ell_i}$ .

### Discrete Dyson Brownian Motion

Another motivation was [Gorin–Shkolnikov '15], who defined a continuous-time, discrete-space, one-parameter  $\theta$ -dependent (growing) Markov chain

$$(\ell_1(t) > \cdots > \ell_N(t)), \quad t \ge 0,$$

that should be regarded as the discrete Dyson Brownian motion.



### Discrete Dyson Brownian Motion

Another motivation was [Gorin-Shkolnikov '15], who defined a continuous-time, discrete-space, one-parameter  $\theta$ -dependent (growing) Markov chain

$$(\ell_1(t) > \cdots > \ell_N(t)), \quad t \ge 0,$$

that should be regarded as the discrete Dyson Brownian motion:

- [discrete  $\rightarrow$  continuous space limit] gives Dyson Brownian motion;
- it is a random evolution of N non-intersecting particles (not a Doob *h*-transform, unless  $\theta = 1$ );
- if started at  $\lambda(0) = (0, \dots, 0)$ , equivalently  $\ell_i(0) = -(i-1)\theta$ , then at time t, you get the discrete  $\beta$ -ensemble with

$$w(x; N) = \frac{t^x}{\Gamma(x + (N-1)\theta + 1)}, \quad x \ge 0.$$

### Jack generating functions

More generally, we consider measures with nice (analytic near  $1^N$ ) Jack generating functions

$$F_{\mathbb{P}_{N}}^{(\theta)}(x_{1},\ldots,x_{N}):=\sum_{\lambda}\mathbb{P}_{N}(\lambda)\frac{J_{\lambda}^{(\theta)}(x_{1},\ldots,x_{N})}{J_{\lambda}^{(\theta)}(1^{N})},$$

where  $J_{\lambda}^{(\theta)}(x_1, \ldots, x_N)$  are Jack symmetric polynomials, defined by  $\left(\xi_1^k + \cdots + \xi_N^k\right) J_{\lambda}^{(\theta)}(x_1, \ldots, x_N) = \sum_{i=1}^N (\ell_i)^k \cdot J_{\lambda}^{(\theta)}(x_1, \ldots, x_N), \quad k \ge 1,$ 

where the Cherednik operators  $\xi_1,\ldots,\xi_N$  are

$$\xi_{i} := \theta(1-i) + x_{i} \frac{\partial}{\partial x_{i}} + \theta \sum_{j=1}^{i-1} \frac{x_{i}}{x_{i} - x_{j}} (1 - s_{i,j}) + \theta \sum_{j=i+1}^{N} \frac{x_{j}}{x_{i} - x_{j}} (1 - s_{i,j}).$$

### Jack generating functions

More generally, we consider measures with nice (analytic near  $1^N$ ) Jack generating functions

$$F_{\mathbb{P}_{N}}^{(\theta)}(x_{1},\ldots,x_{N}) := \sum_{\lambda} \mathbb{P}_{N}(\lambda) \frac{J_{\lambda}^{(\theta)}(x_{1},\ldots,x_{N})}{J_{\lambda}^{(\theta)}(1^{N})},$$

where  $J_{\lambda}^{(\theta)}(x_1, \ldots, x_N)$  are Jack symmetric polynomials, defined by  $\left(\xi_1^k + \cdots + \xi_N^k\right) J_{\lambda}^{(\theta)}(x_1, \ldots, x_N) = \sum_{i=1}^N (\ell_i)^k \cdot J_{\lambda}^{(\theta)}(x_1, \ldots, x_N), \quad k \ge 1,$ 

where the Cherednik operators  $\xi_1,\ldots,\xi_N$  are

$$\xi_{i} := \theta(1-i) + x_{i} \frac{\partial}{\partial x_{i}} + \theta \sum_{j=1}^{i-1} \frac{x_{i}}{x_{i} - x_{j}} (1 - s_{i,j}) + \theta \sum_{j=i+1}^{N} \frac{x_{j}}{x_{i} - x_{j}} (1 - s_{i,j}).$$

A variation was used for LLN/CLT of models at fixed temperature, by [Huang '20]. For high temperature, we proved  $\cdots$ 

## Law of Large Numbers for random $\theta$ -partitions

Theorem [C.-Dołęga '25].

Let  $\{\mathbb{P}_N\}_{N \ge 1}$  be measures on partitions  $\lambda_1 \ge \cdots \ge \lambda_N$ , with empirical measures  $\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{\ell_i}$ , and  $\ell_i := \lambda_i + \theta(i-1)$ .

Assume that the JGF's  $\{F_N^{(\theta)}(x_1,\ldots,x_N)\}_{N\geq 1}$  satisfy:

• 
$$\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{1}{(\ell-1)!} \frac{\partial^{\ell}}{\partial x_{1}^{\ell}} F_{N}^{(\theta)} \Big|_{x_{1} = \dots = x_{N} = 0} = \kappa_{\ell}, \text{ for all } \ell \ge 1.$$

•  $\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{\partial'}{\partial x_{i_1} \cdots \partial x_{i_r}} F_N^{(\theta)} \Big|_{x_1 = \cdots = x_N = 0} = 0, \text{ for all mixed derivatives.}$ 

<u>Then</u> there is a prob. measure  $\mu^{(\gamma)}$  with finite moments  $m_1, m_2, \ldots$ 

s.t.  $\lim_{N\to\infty} \mu_N = \mu^{(\gamma)}$  in the sense of moments, in probability.

Law of Large Numbers for random  $\theta$ -partitions Theorem [C.–Dołęga '25]. LLN for empirical measures if

• 
$$\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{1}{(\ell-1)!} \frac{\partial^{\ell}}{\partial x_{1}^{\ell}} F_{N}^{(\theta)} \Big|_{x_{1} = \dots = x_{N} = 0} = \kappa_{\ell}, \text{ for all } \ell \ge 1.$$

•  $\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{\partial^r}{\partial x_{i_1} \cdots \partial x_{i_r}} F_N^{(\theta)} \Big|_{x_1 = \cdots = x_N = 0} = 0, \text{ for all mixed derivatives.}$ 

Example: Fixed-time t distribution of GS process: | r

$$\kappa_{\ell} = \delta_{\ell,1} \cdot t$$



(A)  $\theta = 1, N = 60$ 



(B)  $\theta = \frac{2}{N}, N = 60$ 



(c)  $\theta = \frac{1}{2N}, N = 60$ 

Law of Large Numbers for random  $\theta$ -partitions Theorem [C.–Dołęga '25]. LLN for empirical measures if

• 
$$\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{1}{(\ell-1)!} \frac{\partial^{\ell}}{\partial x_{1}^{\ell}} F_{N}^{(\theta)} \Big|_{x_{1} = \dots = x_{N} = 0} = \kappa_{\ell}, \text{ for all } \ell \ge 1.$$

•  $\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{\partial'}{\partial x_{i_1} \cdots \partial x_{i_r}} F_N^{(\theta)} \Big|_{x_1 = \cdots = x_N = 0} = 0, \text{ for all mixed derivatives.}$ 

Example: Fixed-time distribution of GS process:  $\kappa_{\ell} = \delta_{\ell,1} \cdot t$ 



Law of Large Numbers for random  $\theta$ -partitions Theorem [C.–Dołęga '25]. LLN for empirical measures if

• 
$$\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{1}{(\ell-1)!} \frac{\partial^{\ell}}{\partial x_{1}^{\ell}} F_{N}^{(\theta)} \Big|_{x_{1} = \dots = x_{N} = 0} = \kappa_{\ell}, \text{ for all } \ell \ge 1.$$

•  $\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{\partial^r}{\partial x_{i_1} \cdots \partial x_{i_r}} F_N^{(\theta)} \Big|_{x_1 = \cdots = x_N = 0} = 0, \text{ for all mixed derivatives.}$ 

Example: Fixed-time distribution of GS process:  $\kappa_{\ell} = \delta_{\ell,1} \cdot t$ 



# Plan of the talk

The Gaussian  $\beta$ -ensemble and semicircle distribution

LLN for random  $\beta$ -partitions at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized  $\gamma$ -free convolution

### Moment problem

Recall that for fixed-time distribution of GS process, started from  $\lambda(0) = (0, 0, \dots, 0)$ , we have  $\mu_N(t) \rightarrow \mu_{\text{Planch}}^{(\gamma, t)}$ .

Theorem [C.–Dołęga '25]. The prob. measure  $\mu_{\text{Planch}}^{(\gamma,t)}$  is uniquely determined by its moments: for  $t = \gamma$ , and all  $\ell \ge 1$ :



Note that: weight( $\Gamma$ )  $\neq \prod_{e \in E(\Gamma)} f(e)$  !



### Inverse transform problem

Recall that for fixed-time distribution of GS process, started from  $\lambda(0) = (0, 0, \dots, 0)$ , we have  $\mu_N(t) \rightarrow \mu_{\text{Planch}}^{(\gamma, t)}$ .

Theorem [C.–Dołęga '25]. As formal power series in  $z^{-1}$ :

$$\begin{split} \sum_{n\geq 0} \frac{\gamma^{\uparrow n}(-t)^n}{z^{\uparrow n}n!} &= \exp\left(\gamma \cdot \widetilde{\mathcal{L}} \left\{ \int_{\mathbb{R}} e^{-xa} \mu_{\text{Planch}}^{(\gamma,t)}(da) - \frac{e^{\gamma x} - 1}{\gamma x} \right\}(z) \right) \ (*) \\ \text{where } z^{\uparrow n} &:= z(z+1) \cdots (z+n-1), \text{ and } \widetilde{\mathcal{L}} \text{ is the formal LT:} \\ &\qquad \widetilde{\mathcal{L}} \left\{ \sum_{n\geq 0} \frac{s_n}{n!} x^n \right\}(z) := \sum_{n\geq 0} s_n z^{-n-1}. \end{split}$$

 $n \ge 0$ 

### Jacobi operators

LHS of (\*) is the characteristic function of certain Jacobi operator

$$\mathcal{J}_{\mathsf{Planch}}^{(\gamma,t)} = \begin{bmatrix} a_1(\gamma,t) & b_1(\gamma,t) & 0 & \cdots \\ b_1(\gamma,t) & a_2(\gamma,t) & b_2(\gamma,t) & \\ 0 & b_2(\gamma,t) & a_3(\gamma,t) & \\ \vdots & & & \ddots \end{bmatrix},$$

i.e. zeroes of the LHS of (\*)  $\approx$  eigenvalues of  $\mathcal{J}_{Planch}^{(\gamma,t)}$ . The exact description of  $\mu_{Planch}^{(\gamma,t)}$  in terms of eigenvalues of  $\mathcal{J}_{Planch}^{(\gamma,t)}$  will be discussed in a future paper (ongoing work with Dołega).



27/31

# Plan of the talk

The Gaussian  $\beta$ -ensemble and semicircle distribution

LLN for random  $\beta$ -partitions at high temperature

The limiting measure: moment problem and Jacobi operators

Quantized  $\gamma$ -free convolution

# Discrete DBM with arbitrary initial condition

Assume that we perform the Markov evolution of Gorin-Shkolnikov for arbitrary initial conditions

$$\ell^{(N)}(0) := \left(\ell_1^{(N)}(0) > \ell_2^{(N)}(0) > \dots > \ell_N^{(N)}(0)\right),$$

that satisfy

$$\frac{1}{N}\sum_{i=1}^N \delta_{\ell_i^{(N)}(0)} \xrightarrow{N \to \infty} \nu.$$

### Discrete DBM with arbitrary initial condition

Assume that we perform the Markov evolution of Gorin-Shkolnikov for arbitrary initial conditions

$$\ell^{(N)}(0) := \left(\ell_1^{(N)}(0) > \ell_2^{(N)}(0) > \dots > \ell_N^{(N)}(0)\right),$$

that satisfy

$$\frac{1}{N}\sum_{i=1}^N \delta_{\ell_i^{(N)}(0)} \xrightarrow{N \to \infty} \nu.$$

Theorem [C.-Dołęga '25]. Let  $\ell^{(N)}(t) = \left(\ell_1^{(N)}(t) > \ldots > \ell_N^{(N)}(t)\right)$  be the Markov chain at time t > 0. There exists a prob. measure  $\mu$  s.t.

$$\lim_{\substack{N \to \infty \\ N\theta \to \gamma}} \frac{1}{N} \sum_{i=1}^{N} \delta_{\ell_i^{(N)}(t)} = \mu.$$

Moreover,  $\mu$  is uniquely determined by its moments, or equivalently:

$$\kappa_n^{(\gamma)}[\mu] = \kappa_n^{(\gamma)}[\nu] + \kappa_n^{(\gamma)} \big[ \mu_{\mathsf{Planch}}^{(\gamma,t)} \big], \text{ for all } n \geqslant 1.$$

# Quantized $\gamma$ -free convolution

Question

Given two probability measures  $\mu, \nu$  with finite  $\kappa_n^{(\gamma)}[\mu]$ ,  $\kappa_n^{(\gamma)}[\nu]$ , does there exist a third probability measure  $\mu \boxplus^{(\gamma)} \nu$ , such that

$$\kappa_n^{(\gamma)} \big[ \mu \boxplus^{(\gamma)} \nu \big] = \kappa_n^{(\gamma)} [\mu] + \kappa_n^{(\gamma)} [\nu], \text{ for all } n \ge 1?$$

Our theorem answers affirmatively when  $\mu = \mu_{\text{Planch}}^{(\gamma,t)}$ , and  $\nu$  is of the form  $\nu = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{\ell_i^{(N)}(0)}$ .

# Quantized $\gamma$ -free convolution

Question

Given two probability measures  $\mu, \nu$  with finite  $\kappa_n^{(\gamma)}[\mu]$ ,  $\kappa_n^{(\gamma)}[\nu]$ , does there exist a third probability measure  $\mu \boxplus^{(\gamma)} \nu$ , such that

$$\kappa_n^{(\gamma)} \big[ \mu \boxplus^{(\gamma)} \nu \big] = \kappa_n^{(\gamma)} [\mu] + \kappa_n^{(\gamma)} [\nu], \text{ for all } n \ge 1?$$

Our theorem answers affirmatively when  $\mu = \mu_{\text{Planch}}^{(\gamma,t)}$ , and  $\nu$  is of the form  $\nu = \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} \delta_{\ell_i^{(N)}(0)}$ .

#### Conjecture

The answer to the question is always YES.

The question is related to the conjecture of [Stanley '89] on the integrality/positivity of Littlewood-Richardson coeffs of Jack polys.

1-parameter  $\gamma$ -generalization of the (quantized) free convolution? ([Voiculescu '92], [Speicher '94], [Bufetov–Gorin '15]).



(A)  $\theta = 1, N = 60$ 

(B)  $\theta = \frac{2}{N}, N = 60$ 

(c)  $\theta = \frac{1}{2N}, N = 60$ 

# Thank you for your attention!

